986 resultados para Fiber-metal laminates


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adhesive bonding provides solutions to realize cost effective and low weight aircraft fuselage structures, in particular where the Damage Tolerance (DT) is the design criterion. Bonded structures that combine Metal Laminates (MLs) and eventually Selective Reinforcements can guarantee slow crack propagation, crack arrest and large damage capability. To optimize the design exploiting the benefit of bonded structures incorporating selective reinforcement requires reliable analysis tools. The effect of bonded doublers / selective reinforcements is very difficult to be predicted numerically or analytically due to the complexity of the underlying mechanisms and failures modes acting. Reliable predictions of crack growth and residual strength can only be based on sound empirical and phenomenological considerations strictly related to the specific structural concept. Large flat stiffened panels that combine MLs and selective reinforcements have been tested with the purpose of investigating solutions applicable to pressurized fuselages. The large test campaign (for a total of 35 stiffened panels) has quantitatively investigated the role of the different metallic skin concepts (monolithic vs. MLs) of the aluminum, titanium and glass-fiber reinforcements, of the stringers material and cross sections and of the geometry and location of doublers / selective reinforcements. Bonded doublers and selective reinforcements confirmed to be outstanding tools to improve the DT properties of structural elements with a minor weight increase. However the choice of proper materials for the skin and the stringers must be not underestimated since they play an important role as well. A fuselage structural concept has been developed to exploit the benefit of a metal laminate design concept in terms of high Fatigue and Damage Tolerance (F&DT) performances. The structure used laminated skin (0.8mm thick), bonded stringers, two different splicing solutions and selective reinforcements (glass prepreg embedded in the laminate) under the circumferential frames. To validate the design concept a curved panel was manufactured and tested under loading conditions representative of a single aisle fuselage: cyclic internal pressurization plus longitudinal loads. The geometry of the panel, design and loading conditions were tailored for the requirements of the upper front fuselage. The curved panel has been fatigue tested for 60 000 cycles before the introduction of artificial damages (cracks in longitudinal and circumferential directions). The crack growth of the artificial damages has been investigated for about 85 000 cycles. At the end a residual strength test has been performed with a “2 bay over broken frame” longitudinal crack. The reparability of this innovative concept has been taken into account during design and demonstrated with the use of an external riveted repair. The F&DT curved panel test has confirmed that a long fatigue life and high damage tolerance can be achieved with a hybrid metal laminate low weight configuration. The superior fatigue life from metal laminates and the high damage tolerance characteristics provided by integrated selective reinforcements are the key concepts that provided the excellent performances. The weight comparison between the innovative bonded concept and a conventional monolithic riveted design solution showed a significant potential weight saving but the weight advantages shall be traded off with the additional costs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Devido às necessidades da indústria atual é cada vez mais importante a utilização de métodos de união de materiais distintos. A utilização de adesivos no processo de produção de materiais compósitos tem uma grande aplicação, uma vez que permite ligar os diferentes materiais e ainda reduzir significativamente o peso do conjunto. Este trabalho teve como principal objetivo aumentar a resistência à delaminação de materiais compósitos no sentido da espessura, concretamente dos plásticos reforçados com fibras de carbono (CFRP), através da utilização de placas da liga de alumínio 2024-T3. Este conceito é muito semelhante ao utilizado nos laminados por fibras e metal (LFM) para aumentar a sua resistência à delaminação. Pretendeu-se também a identificação da configuração da junta que apresenta melhores resultados, comparativamente à junta de referência composta apenas por CFRP. Inicialmente, produziram-se apenas juntas de CFRP que foram utilizadas como comparação com os laminados de fibras e metal. Com o objetivo de melhorar a adesão entre os CFRP e a liga de alumínio, foram realizados três tratamentos superficiais diferentes, nomeadamente a lixagem, a anodização e o ataque com ácido. Posteriormente, foram produzidas as juntas com as seguintes configurações: CFRP-AL-CFRP, CFRP-AL-CFRP-AL-CFRP e AL-CFRP-AL. A realização deste trabalho permitiu concluir que com a adição de placas de alumínio, se conseguiu um melhoramento da resistência à delaminação das fibras de carbono e ainda um aumento da resistência específica no sentido da sua espessura. A JSS com a configuração AL-CFRP-AL e com comprimento de sobreposição de 50 mm foi a configuração que apresentou uma força de rotura mais elevada, ou seja, uma maior resistência à delaminação, comparativamente à junta de referência e às restantes configurações em estudo. A falha coesiva verificada perto da interface da junta AL-CFRP-AL, pode ser devida ao elevado comprimento de sobreposição e às diferentes elasticidades do alumínio e do CFRP, o que naturalmente levou a elevadas tensões localizadas nas extremidades da junta. Os resultados demostraram que é possível aumentar a resistência transversal do compósito utilizando uma placa de alumínio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influences of hygrothermal conditioning on mechanical properties of a fiber/metal laminate (FML) have been investigated by tensile and compression tests. The environmental action, such as high moisture concentration, high temperatures, corrosive fluids or ultraviolet radiation (UV), can affect the performance of advanced composites during service. In the present work, the results show that for the glass fiber/epoxy composites tensile and compression values decrease after hygrothermal conditioning. However, no changes on mechanical properties (tensile and compression strength) are observed for the Glare laminate, regardless the hygrothermal conditioning. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fracture resistance of endodontically treated teeth has been an obstacle to the durability of the remaining teeth and restorations. The aim of this study was to evaluate the fracture resistance of endodontically treated bovine and human teeth that were restored with either prefabricated metal posts, glass fiber posts, or composite resin cores. Statistical analysis revealed significant difference between different substrates, but there was no statistically significant difference between different types of intraradicular posts or in the interaction between substrate and post types. The intraradicular posts do not increase the fracture resistance of endodontically treated teeth. The metal posts presented more unfavorable fracture modes when compared to glass fiber posts and composite resin cores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite materials characteristics are highly influenced by foreign objects impacts. My research focused on how a Low Velocity Impact and, therefore, Barely Visible Impact Damages, can reduce carbon/epoxy laminates compressive residual characteristics and which could be an improvement of their impact resistance. Solution was found out in Fibre Metal Laminates. Experimental and numerical analysis were performed on Carbon/Epoxy and Fibre Metal Laminate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tension-tension fatigue behavior of metal/fiber laminates (MFLs) has been investigated. These MFLs were produced with carbon fiber and by treating the aluminum foil to promote adhesion bonding by two methods: sulfuric-boric-oxalic acid anodization (SBOA) and chromic acid anodization (CAA). The surface treatments were evaluated by scanning electron microscopy (SEM) techniques and roughness measurements. It was observed that MFL specimens produced with SBOA treatments presents comparable mechanical results when compared with MFLs produced with CAA treatment. Microstructural observations of the fracture surfaces by SEM show hackle formation is the predominant damage mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statement of problem. Dental fractures can occur in endodontically treated teeth restored with posts. Purpose. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Material and methods. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha=.05). Results. The ANOVA analysis indicated significant differences (P<.05) among the groups, and the Tukey test revealed no significant difference among the metal posts of 6-mm length (26.5 N +/- 13.4), 8-mm length (25.2 N +/- 13.9), and 10-mm length (17.1 N +/- 5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/- 11.0) were compared with the 6-mm (6.9 N +/- 4.6) and 10-mm (31.7 N +/- 13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (P<.001). Conclusions. Within the limitations of this study, it was concluded that the glass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines. (J Prosthet Dent 2009;101:183-188)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PP has been getting much attention over the years because it is a very durable polymer commonly used in aggressive environments including automotive battery casings, fuel containers etc. They are used to make bottles, fibers for clothing, components in cars etc. However, it has some shortcomings such as low dimensional and thermal stability. Materials such as metal oxides with sizes of the order 1–50 nm have received a great deal of attention because of their versatile applications in polymer/ inorganic nanocomposites, optoelectronic devices, biomedical materials, and other areas. They are stable under harsh process conditions and also regarded as safe materials to human beings and animals. In the present investigation, PP is modified by incorporating metal oxide nanoparticles such as ZnO and TiO2 by simple melt mixing method. Melt spinning method was used to prepare PP/metal oxide nanocomposite fibers. Various studies have been carried out on these composites and fibers. In the first part of the study, ZnO nanoparticles were prepared from ZnCl2 and NaOH in presence of chitosan, PVA, ethanol and starch. This is a simple and inexpensive method compared to other methods. Change in morphology and particle size of ZnO were studied. Least particle size was obtained in chitosan medium. The particles were characterized by using XRD, SEM, TEM, TGA and EDAX. Antibacterial properties of ZnO prepared in chitosan medium (NZO) and commercial zinc oxide (CZO) were evaluated using a gram positive and a gram negative bacteria

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)