999 resultados para Fiber glasses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the optical spectroscopic properties and thermal stability of Er3+-doped TeO2-BaO (Li2O,NaO)-La2O3 glasses for developing 1.5-mu m fiber amplifiers. Upon excitation at 977 nm laser diode, an intense 1.53-mu m infrared fluorescence has been observed with a broad full width at half maximum (FWHM) of about 60 nm for the Er3+-doped TeO2-BaO (Li2O, Na2O)-La2O3 glass with 10 mol% of BaO. The calculated fluorescence lifetime and the emission cross-sections of the 1.53-mu m transition are 2.91 ms and similar to 9.97 x 10(-21) cm(2), respectively. It is noted that the gain bandwidth, a, x FWHM, of the TeO2-BaO-La2O3Er2O3 glass is about 600, which is significantly higher than that in silicate and phosphate glasses. Meanwhile, it is interesting to note that the TeO2-BaO-La2O3-Er2O3 glass has shown a high glass thermal stability and good infrared transmittance. As a result, TeO2-BaO (Li2O, Na2O)-La2O3 glass with 10 mol% of BaO has been considered to be more useful as a host for broadband optical fiber amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luminescences from bismuth-doped lime silicate glasses were investigated. Luminescences centered at about 400, 650, and 1300 nm were observed, excited at 280, 532 and 808 nm, respectively. These three luminescence bands arise from three different kinds of bismuth ions in the glasses. The visible luminescences centered at 400 and 650 nm arise from Bi3+, and Bi2+, respectively. The infrared luminescences cover the wavelength range from 1000 to 1600 nm when exited by an 808 nm laser diode. The full width at half maximum (FWHM) of the infrared luminescences is more than 205 urn. The intensity of the infrared luminescence decreases with the increment in CaO content. We suggest that the infrared luminescences might arise from Bi+. Such broadband luminescences indicate that the glasses may be potential candidate material for broadband fiber amplifiers and tunable lasers. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Broadband infrared luminescence is observed in various Bi-doped oxide glasses prepared by conventional melting-quenching technique. The absorption spectrum of the Bi-doped germanium oxide glass consists of five broad peaks at below 370, 500, 700, 800 and 1000 nm. The fluorescence spectrum exhibits a broad peak at about 1300 nm with full width at half maximum (FWHM) of more than 300 nm when excited by an 808 nm laser diode. The fluorescence lifetime at room temperature decreases with increasing Bi2O3 concentration. Influence of the glass composition and melting atmosphere on the fluorescence lifetime and luminescent intensity is investigated. The mechanism of the broadband infrared luminescence is suggested. The product of stimulated emission cross-section and lifetime of the Bi-doped aluminophosphate glass is about 5.0 X 10(-24) cm(2) s. The glasses might be promising for applications in broadband optical fiber amplifiers and tunable lasers. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report near infrared broadband emission of bismuth-doped barium-aluminum-borate glasses. The broadband emission covers 1.3 mum window in optical telecommunication systems. And it possesses wide full width at half maximum (FWHM) of similar to 200nm and long lifetime as long as 350 mus. The luminescent properties are quite sensitive to glass compositions and excitation wavelengths. Based on energy matching conditions, we suggest that the infrared emission may be ascribed to P-3(1) --> P-3(0) transition of Bi+. The broad infrared emission characteristics of this material indicate that it might be a promising candidate for broadband optical fiber amplifiers and tunable lasers. (C) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The broadband emission in the 1.2 similar to 1.6 mu m region from Li2O-Al2O3-ZnO-SiO2 ( LAZS) glass codoped with 0.01mol.% Cr2O3 and 1.0mol.% Bi2O3 when pumped by the 808nm laser at room temperature is not initiated from Cr4+ ions, but from bismuth, which is remarkably different from the results reported by Batchelor et al. The broad similar to 1300nm emission from Bi2O3-containing LAZS glasses possesses a FWHM ( Full Width at Half Maximum) more than 250nm and a fluorescent lifetime longer than 500 mu s when excited by the 808nm laser. These glasses might have the potential applications in the broadly tunable lasers and the broadband fiber amplifiers. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The broadband luminescence covering 1.2-1.6 mu m was observed from bismuth and aluminum co-doped germanium oxide glasses pumped by 808 nm laser at room temperature. The spectroscopic properties of GeO2:Bi,Al glasses strongly depend on the glass compositions and the pumping sources. To a certain extent, the Al3+ ions play as dispersing reagent for the infrared-emission centers in the GeO2:Bi,Al glasses. The broad infrared luminescence with a full width at half maximum larger than 200 nm and a lifetime longer than 200 mu s possesses these glasses with the potential applications in broadly tunable laser sources and ultra-broadband fiber amplifiers in optical communication field. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method was used to prepare erbium-doped high silica (SiO2% > 96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 x 103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we report on surface crystallization phenomena and propose a solution for the fabrication of long and robust tellurite glass fibers. The bulk tellurite glasses of interest were prepared by melting and quenching techniques. Tellurite glass preforms and fibers were fabricated by suction casting and rod-in-tube drawing methods, respectively. The surfaces of the tellurite bulk glass samples and of the drawn fibers prepared under different controlled atmospheres were examined by X-ray diffraction. When the tellurite glass fibers were drawn in ambient air containing water vapor, four primary kinds of small crystals were found to appear on the fiber surface, alpha-TeO(2), gamma-TeO(2), Zn(2)Te(3)O(8) and Na(2)Zn(3)(CO(3))(4)center dot 3H(2)O. A mechanism for this surface crystallization is proposed and a solution described, using an ultra-dry oxygen gas atmosphere to effectively prevent surface crystallization during fiber drawing. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Without introducing concentration quenching phenomenon, a few wt% of Tb3+ and Yb3+ ions were doped into a group of easily-fiberized tellurite glasses characterized by loose polyhedron structures and rich interstitial positions. Intense green upconversion emission from Tb3+ ions centered at 539 nm due to transition 5D4→7F5 was observed by direct excitation of Yb3+ ions with a laser diode at 976 nm. Optimizing the concentration ratio of Tb3+/Yb3+, a tellurite glass with composition of 80TeO2-10ZnO-10Na2O (mol%)+1.0wt% Tb2O3+3.0wt% Yb2O3 was found to present the highest green light intensity and therefore is especially suitable for efficient green fiber laser development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families. In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a modified chalcogenide glass was studied by X-ray powder diffraction, differential thermal analysis, infrared and Raman scattering spectroscopies. The study of this new matrix opens new perspectives to fabricate Pr3+-doped fibers to operate as an optical amplifier in the 1.3 mum telecommunications window. The Pr3+-doped 70Ga(2)S(3)-30La(2)S(3) glass was modified through the substitution of La2S3 by La2O3, which improves the thermal stability of these glasses without any modification of phonon energy. The possibility to pull a fiber from this glass system without any devitrification is easily achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The viscosity of two fluoroindate glasses was measured as a function of temperature in the range of 310 °C - 362 °C. In such interval, the viscosity values were found to be similar to those reported for fluorozirconate glasses. The log η - 1/T plots had an unexpected behavior: two viscosity regions that seem to obey Arrhenius equation were identified and the activation energy for viscous flow (EA) for the region near Tg is smaller than the value found above the transition range. This behavior is probably due to structural changes occurred around Tg. The low values of the activation energy for viscous flow obtained for the indium fluoride-based glasses studied, suggest a good resistance against the devitrification process, what can make them suitable for fiber preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The understanding of the kinetics of devitrification of a glass is important for anticipating its stability in a particular purpose, such as fiber-drawing processes. The crystallization kinetics of (BaF2)16(ZnF2)20(SrF 2)20(NaF)2 (GaF3)5(InF3)36(GdF 3)1 glass prepared by quenching were studied by differential scanning calorimetry (DSC). Avrami's exponent (n) obtained by a non-isothermal method was 4.3 for a solid and 2.4 for a powdered sample. According to the classical interpretation of n, these magnitudes correspond to an interface-controlled crystal growth and a diffusion-controlled crystal growth, respectively. The activation energies for crystallization (E) was 62 ± 1 kJ/mol for solid glass and 245 ± 2 kJ/mol for powdered glass. These results are discussed in terms of glass particle size. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two series of glasses with composition (mol%) 70PbGeO3- 15PbF2-15CdF2, the first one with different Tm 3+ contents (0.2, 0.4, 0.6 and 0.8 mol%) and the second one with 0.2 mol% Tm3+ and different Ho3+ contents (0.1, 0.5, 1.0 and 1.5 mol%), have been prepared and some of their spectroscopic properties studied. Absorption in the visible-near infrared and emission in the near infrared region of the electromagnetic spectrum have been obtained. Concerning emission at the 1.4-1.5 μm region, optimization of rare earth ions content leads to 0.2 and 0.5 mol% for Tm3+ and Ho3+, respectively. We discuss potential application of these compositions. © 2005 Elsevier B.V. All rights reserved.