961 resultados para Few-body problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we show the existence of three new families of stacked spatial central configurations for the six-body problem with the following properties: four bodies are at the vertices of a regular tetrahedron and the other two bodies are on a line connecting one vertex of the tetrahedron with the center of the opposite face. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the scaling properties of few-body observables near the critical conditions for binding, with particular attention to light exotic nuclei, molecules and ultracold atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear matter calculations with realistic nucleon-nucleon potentials present a general scaling between the nucleon-nucleus binding energy, the corresponding saturation density, and the triton binding energy. The Thomas-Efimov three-body effect implies in correlations among low-energy few-body and many-body observables. It is also well known that, by varying the short-range repulsion, keeping the two-nucleon information (deuteron and scattering) fixed, the four-nucleon and three-nucleon binding energies lie on a very narrow band known as a Tjon line. By looking for a universal scaling function connecting the proper scales of the few-body system with those of the many-body system, we suggest that the general nucleus-nucleon scaling mechanism is a manifestation of a universal few-body effect.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac-delta and/or its derivatives). They express the renormalization group invariance of quantum mechanics. The present approach for the renormalization scheme relies on a subtracted T-matrix equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Faddeev-type equations are applied to three-charged particle systems. The rather satisfactory results are obtained for low energy e(+)H elastic scattering and muonic transfer reactions. The cross sections for antihydrogen formation from antiproton-positronium collisions are calculated using a six state model (Ps[1s2s2p], (H) over bar[1s2s2p]).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first step toward the application of an effective non partial wave (PW) numerical approach to few-body atomic bound states has been taken. The two-body transition amplitude which appears in the kernel of three-dimensional Faddeev-Yakubovsky integral equations is calculated as function of two-body Jacobi momentum vectors, i.e. as a function of the magnitude of initial and final momentum vectors and the angle between them. For numerical calculation the realistic interatomic interactions HFDHE2, HFD-B, LM2M2 and TTY are used. The angular and momentum dependence of the fully off-shell transition amplitude is studied at negative energies. It has been numerically shown that, similar to the nuclear case, the transition amplitude exhibits a characteristic angular behavior in the vicinity of He-4 dimer pole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trajectories of the planar, circular, restricted three-body problem are given in the configuration space through the caustics associated to the invariant tori of quasi-periodic orbits. It is shown that the caustics of trajectories librating in any particular resonance display some features associated to that resonance. This method can be considered complementary to the Poincare surface of section method, because it provides information not accessible by the other method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional three-body problem with non-equal masses interacting through pairwise harmonic forces of non-equal strengths is analysed. It is shown that the Jacobi coordinates per se do not decouple this problem but lead to the problem of two coupled three-dimensional harmonic oscillators which becomes exactly soluble through the use of an additional coordinate set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regular-geometric-figure solution to the N-body problem is presented in a very simple way. The Newtonian formalism is used without resorting to a more involved rotating coordinate system. Those configurations occur for other kinds of interactions beyond the gravitational ones for some special values of the parameters of the forces. For the harmonic oscillator, in particular, it is shown that the N-body problem is reduced to N one-body problems.