822 resultados para Ferrite nanoparticles
Resumo:
The disclosure of magnetic ionic liquids (MILs) as stable dispersions of surface modified gamma-Fe(2)O(3) or CoFe(2)O(4) nanoparticles (NPs) in the 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIBF(4)) ionic liquid is reported. The magnetic NPs were characterized by X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy. The surface modified NPs have proved to form stable dispersions in BMIBF(4) in the absence of water and behave like a magnetic ionic liquid. The MILs have been characterized by Raman spectroscopy, magnetic measurements, and DSC. The stability of the magnetic NPs in BMIBF(4) is consistently explained by assuming the formation of a semiorganized protective layer composed of supramolecular aggregates in the form of [(BMI)(2)(BF(4))(3)](-). A superparamagnetic behavior and saturation magnetization of ca. 18 emu/g for a sample containing 30% w/w maghemite NPs/BMIBF(4) have been inferred from static and dynamic magnetic measurements. DSC results have shown that the MIL composed of 30% w/w CoFe(2)O(4) NPs/BMIBF(4) remains a liquid phase down to -84 degrees C.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work proposes a new method to determine the chemical composition of magnetic ferrite nanoparticles by the slurry injection technique using the inductively coupled plasma optical emission spectroscopy. In this way, experimental conditions such as aerosol gas flow rate and colloidal stability were optimized in order to use aqueous calibration curves in the slurry nebulization and to determine the chemical composition of a series of sols containing chemically synthesized size-tailored NiFe 2O 4 nanograms. Then, the results of direct sampling and those of conventional aqueous introduction analysis are compared, showing the efficiency of the proposed method.
Resumo:
Rubber nanocomposites containing different concentrations of ferroelectric and paramagnetic nanoparticles were fabricated. Nanostructures of ferroelectric potassium strontium niobate and paramagnetic nickel-zinc ferrite were synthesized using a modified polyol method. The nanoparticle characterization was carried out by transmission electron microscopy and X-ray diffraction, showing that the materials were produced with nanometer dimensions, specific crystallinity and microstrain. Mechanical tests such as hardness type Shore A, stress-strain and compression resistance were performed. They showed that increasing the concentration of nanoparticles enhance the rigidity of vulcanized films of natural rubber and this change is more pronounce for the nanocomposites formed with ferrite nanoparticles, likely due to the effect of its morphological and surface properties. © 2013 by American Scientific Publishers.
Resumo:
Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanoconnposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 X 10(-5) respectively.
Resumo:
Maghemite-based bovine serum albumin (BSA) nanocomposites have been investigated using photoacustic spectroscopy (PAS). Features in the PAS spectra were analyzed in terms of three bands (band-C, band-S, and band-L). Though the observed PAS peak positions are insensitive to the nanoparticle concentration the PAS peak intensity displays a different behaviour. For band-C the PAS intensity scales almost linearly with the nanoparticle concentration in the hosting template. Nevertheless, it was found that the PAS intensity of band-L scales sub-linearly with the nanoparticle concentration.
Resumo:
The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials, however, their ME switching is often accompanied by significant hysteresis and coercivity that represents, for some applications, a severe weakness. To overcome this obstacle, this work focus on the development of a new type of ME polymer nanocomposites that exhibits tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE), matrix. No substantial differences were detected on the time-stable piezoelectric response of the composites (≈ -28 pC.N−1) with distinct ferrite fillers and for the same ferrite content of 10wt.%. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10wt.% ferrite content revealed that the ME induced voltage increases with increasing DC magnetic field until a maximum of 6.5 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.26 T, and 0.8 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.15T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. On the contrary, the ME response of the ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.
Resumo:
Fine particles of lithium ferrite were synthesized by the sol-gel method. By subsequent heat treatment at different temperatures, lithium ferrites of different grain sizes were prepared. A structural characterization of all the samples was conducted by the x-ray diffraction technique. A grain size of around 12 nm was observed for Li0.5Fe2.5O4 obtained through the sol-gel method. Magnetic properties of lithium ferrite nanoparticles with grain size ranging from 12 to 32 nm were studied. Magnetization measurements showed that Li0.5Fe2.5O4 fine particles exhibit a deviation from the predicted magnetic behaviour. The as-prepared sample of lithium ferrite showed a maximum saturation magnetization of 75 emu g−1. Variation of coercivity is attributed to the transition from multi-domain to single domain nature. Dielectric permittivity and ac conductivity of all the samples were evaluated as a function of frequency, temperature and grain size. Variation of permittivity and ac conductivity with frequency reveals that the dispersion is due to the Maxwell–Wagner type interfacial polarization
Resumo:
We propose goethite nanorods as suitable anti-ferromagnetic substrates. The great advantage of using these inorganic nanostructures as building blocks comes from the fact that it permits the design and fabrication of colloidal and supracolloidal assemblies knowing first their magnetic characteristics. As a proof of concept, we have developed mix multifunctional systems, driving on the surface of these AFM substrates, cobalt ferrite nanoparticles (the study of bimagnetic systems opens new degrees of freedom to tailor the overall properties and offers the Meiklejohn-Bean paradigm, but inverted), a silica shell (protection purposes, but also as a tailored spacer that permits controlling magnetic interactions), and metallic gold clusters (seeds that can favor the acquisition of optical or catalytic properties).
Resumo:
Ferrites of the type M(II)Fe(2)O(4) (M = Fe and Co) have been prepared by the traditional coprecipitation method. These ferrites were modified by the adsorption of fatty acids derived from soybean and castor oil and were then dispersed in cyclohexane, providing very stable magnetic fluids, readily usable in nonpolar media. The structural properties of the ferrites and modified ferrites as well as the magnetic fluids were characterized by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), DRIFTS (diffusion reflectance infrared Fourier transform spectroscopy), FTMR (Fourier transform near-infrared), UV-vis, normal Raman spectroscopy, and surface-enhanced Raman scattering (SERS). XRD and TEM analysis have shown that the magnetic nanoparticles (nonmodified and modified) present diameters in the range of 10-15 nm. DRIFTS measurements have shown that the carboxylate groups of soybean and castor oil fatty acids adsorb on the ferrite surface, forming three different structures: a bridging bidentate, a bridging monodentate, and a bidentate chelate structure. The FTIR and Raman spectra of nonmodified Fe(3)O(4) and CoFe(2)O(4) nanoparticles have shown that the number of observed phonons is not compatible with the expected O(h)(7) symmetry, since IR-only active phonons were observed. in the Raman spectra and vice versa. SERS measurements of a CoFe(2)O(4) thin film on a SERS-active gold electrode at different applied potentials made possible the assignment of the signals near 550 and 630 cm(-1) to Co-O motions and the signals near 470 and 680 cm(-1) to Fe-O motions.
Resumo:
Breast cancer is a public health problem throughout the world. Moreover, breast cancer cells have a great affinity for hydroxyapatite, leading to a high occurrence of bone metastasis. In this work we developed a bio-nanocomposite (bio-NCP) in order to use such affinity in the diagnosis and treatment of breast cancer. The bio-NCP consists of magnetic nanoparticles of Mn and Zn ferrite inside a polymeric coating (chitosan) modified with nanocrystals of apatite. The materials were characterized with synchrotron X-ray Powder Diffraction (XPD), Time-of-Flight Neutron Powder Diffraction (NPD), Fourier Transformed Infra-red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and magnetic measurement with a Physical Property Measurement System (PPMS). We obtained ferrite nanoparticles with a high inversion degree of the spinel structure regarding the Fe and Mn, but with all the Zn in the A site. The coating of such nanoparticles with chitosan had no notable effects to the ferrite microstructure. In addition, the polymeric surface can be easily modified with apatite nanocrystals since the hydration of the bio-NCP during synthesis can be controlled. The resulting bio-NCP presents a spherical shape with a narrow size distribution and high magnetic response at room temperature and is a very promising material for early diagnosis of breast cancer and its treatment. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Composite NiFe2O4–TiO2 magnetic catalysts were prepared by mechanochemical synthesis from a mixture of titania supported nickel ferrite nanoparticles and P25 titania (Evonic). The former provides fast and efficient heating under radiofrequency field, while the latter serves as an active catalyst or catalyst support. The highest heating rate was observed over a catalyst prepared for a milling time of 30 min. The catalytic activity was measured over the sulfated composite catalysts in the condensation of aniline and 3-phenylbutyric acid in a stirred tank reactor and in a continuous RF heated flow reactor in the 140–170 °C range. The product yield of 47% was obtained over the sulfated P25 titania catalyst in the flow reactor.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, 2015.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Física, 2015.