952 resultados para Fatigue life distribution
Resumo:
The effects of cold spray coating and substrate surface preparation on crack initiation under cyclic loading have been studied on Al2024 alloy specimens. Commercially pure (CP) aluminum feedstock powder has been deposited on Al2024-T351 samples using a cold-spray coating technique known as high velocity particle consolidation. Substrate specimens were prepared by surface grit blasting or shot peening prior to coating. The fatigue behavior of both coated and uncoated specimens was then tested under rotating bend conditions at two stress levels, 180 MPa and 210 MPa. Scanning electron microscopy was used to analyze failure surfaces and identify failure mechanisms. The results indicate that the fatigue strength was significantly improved on average, up to 50% at 180 MPa and up to 38% at 210 MPa, by the deposition of the cold-sprayed CP-Al coatings. Coated specimens first prepared by glass bead grit blasting experienced the largest average increase in fatigue life over bare specimens. The results display a strong dependency of the fatigue strength on the surface preparation and cold spray parameters
Resumo:
Fastener holes in aeronautical structures are typical sources of fatigue cracks due to their induced local stress concentration. A very efficient solution to this problem is to establish compressive residual stresses around the fastener holes that retard the fatigue crack nucleation and its subsequent local propagation. Previous work done on the subject of the application of LSP treatment on thin, open-hole specimens [1] has proven that the LSP effect on fatigue life of treated specimens can be detrimental, if the process is not properly optimized. In fact, it was shown that the capability of the LSP to introduce compressive residual stresses around fastener holes in thin-walled structures representative of typical aircraft constructions was not superior to the performance of conventional techniques, such as cold-working.
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 10 9 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically steels and Al and Ti alloys) under different LSP irradiation conditions are presented
Resumo:
•Introduction •Process Experimental Setup •Experimental Procedure •Experimental Results for Al2024 - T351, Ti6Al4V and AISI 316L - Surface Roughness and Compactation - Residual stresses - Tensile Strength - Fatigue Life •Discussion and Outlook - Prospects for technological applications of LSP
Resumo:
Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional “shot peening” technique in what concerns depth of induced compressive residual stresses fields are also made through the paper
Resumo:
Effect of Thermal Relaxation on LSP Induced Residual Stresses and Fatigue Life Enhancement of AISI 316L stainless steel
Resumo:
An increase in the demand for the freight shipping in the United States has been predicted for the near future and Longer Combination Vehicles (LCVs), which can carry more loads in each trip, seem like a good solution for the problem. Currently, utilizing LCVs is not permitted in most states of the US and little research has been conducted on the effects of these heavy vehicles on the roads and bridges. In this research, efforts are made to study these effects by comparing the dynamic and fatigue effects of LCVs with more common trucks. Ten Steel and prestressed concrete bridges with span lengths ranging from 30’ to 140’ are designed and modeled using the grid system in MATLAB. Additionally, three more real bridges including two single span simply supported steel bridges and a three span continuous steel bridge are modeled using the same MATLAB code. The equations of motion of three LCVs as well as eight other trucks are derived and these vehicles are subjected to different road surface conditions and bumps on the roads and the designed and real bridges. By forming the bridge equations of motion using the mass, stiffness and damping matrices and considering the interaction between the truck and the bridge, the differential equations are solved using the ODE solver in MATLAB and the results of the forces in tires as well as the deflections and moments in the bridge members are obtained. The results of this study show that for most of the bridges, LCVs result in the smallest values of Dynamic Amplification Factor (DAF) whereas the Single Unit Trucks cause the highest values of DAF when traveling on the bridges. Also in most cases, the values of DAF are observed to be smaller than the 33% threshold suggested by the design code. Additionally, fatigue analysis of the bridges in this study confirms that by replacing the current truck traffic with higher capacity LCVs, in most cases, the remaining fatigue life of the bridge is only slightly decreased which means that taking advantage of these larger vehicles can be a viable option for decision makers.
Resumo:
In the last few decades, offshore field has grown fast especially after the notable development of technologies, explorations of oil and gas in deep water and the high concern of offshore companies in renewable energy mainly Wind Energy. Fatigue damage was noticed as one of the main problems causing failure of offshore structures. The purpose of this research is to focus on the evaluation of Stress Concentration Factor and its influence on Fatigue Life for 2 tubular KT-Joints in offshore Jacket structure using different calculation methods. The work is done by using analytical calculations, mainly Efthymiou’s formulations, and numerical solutions, FEM analysis, using ABAQUS software. As for the analytical formulations, the calculations were done according to the geometrical parameters of each method using excel sheets. As for the numerical model, 2 different types of tubular KT-Joints are present where for each model 5 shell element type, 3 solid element type and 3 solid-with-weld element type models were built on ABAQUS. Meshing was assigned according to International Institute of Welding (IIW) recommendations, 5 types of mesh element, to evaluate the Hot-spot stresses. 23 different types of unitary loading conditions were assigned, 9 axial, 7 in-plane bending moment and 7 out-plane bending moment loads. The extraction of Hot-spot stresses and the evaluation of the Stress Concentration Factor were done using PYTHON scripting and MATLAB. Then, the fatigue damage evaluation for a critical KT tubular joint based on Simplified Fatigue Damage Rule and Local Approaches (Strain Damage Parameter and Stress Damage Parameter) methods were calculated according to the maximum Stress Concentration Factor conducted from DNV and FEA methods. In conclusion, this research helped us to compare different results of Stress Concentration Factor and Fatigue Life using different methods and provided us with a general overview about what to study next in the future.
Resumo:
Fretting fatigue is a fatigue damage process that occurs when two surfaces in contact with each other are subjected to relative micro-slip, causing a reduced fatigue life with respect to the plain fatigue case. Fretting has been now studied deeply for over 50 years, but still no univocal design approach has been universally accepted. This thesis presents a method for predicting the fretting fatigue life of materials based on the material specific fatigue parameters. To validate the method, a set of fretting fatigue experimental tests have been run, using a newly designed specimen. FE analyses of the tests were also run and the SWT parameter was retrieved and it was found to be useful to successfully identify which samples failed. Finally, S-N curves were retrieved by using two different fatigue life predicting methods (CoffinManson and Jahed-Varvani). The two different methods were compared with the experimental results and it was found that the Jahed-Varvani method gave accurate results in terms of fretting fatigue life.
Resumo:
The Birnbaum-Saunders distribution has been used quite effectively to model times to failure for materials subject to fatigue and for modeling lifetime data. In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the non-null distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the Birnbaum-Saunders regression model. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters and for testing the shape parameter. Monte Carlo simulation is presented in order to compare the finite-sample performance of these tests. We also present two empirical applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Birnbaum-Saunders regression model is becoming increasingly popular in lifetime analyses and reliability studies. In this model, the signed likelihood ratio statistic provides the basis for testing inference and construction of confidence limits for a single parameter of interest. We focus on the small sample case, where the standard normal distribution gives a poor approximation to the true distribution of the statistic. We derive three adjusted signed likelihood ratio statistics that lead to very accurate inference even for very small samples. Two empirical applications are presented. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this article, we deal with the issue of performing accurate small-sample inference in the Birnbaum-Saunders regression model, which can be useful for modeling lifetime or reliability data. We derive a Bartlett-type correction for the score test and numerically compare the corrected test with the usual score test and some other competitors.
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We derive a simple matrix formula for second-order covariances of maximum-likelihood estimators in this class of models. The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors. Some simulation results show that the second-order covariances can be quite pronounced in small to moderate sample sizes. We also present empirical applications.
Resumo:
We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.
Resumo:
The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.