824 resultados para Fat stores
Resumo:
Studies indicate that overweight and obesity protect against HIV-disease progression in antiretroviral therapy (ART)-naïve patients. We examined retrospectively the relationship of overweight/obesity with HIV-disease progression in ART-naïve HIV+ adults in Botswana in a case-control study with 18-month follow-up, which included 217 participants, 139 with BMI 18.0-24.9 kg/m2 and 78 with BMI ≥25 kg/m2. Archived plasma samples were used to determine inflammatory markers: leptin and bacterial endotoxin lipopolysaccharide (LPS), and genotype single nucleotide polymorphisms (SNPs) of the Fat Mass and Obesity Associated Gene (FTO). At baseline, BMI was inversely associated with risk for AIDS-defining conditions (HR=0.218; 95%CI=0.068, 0.701, P=0.011), and higher fat mass was associated with reduced risk of the combined outcome of CD4+cell count ≤250/µL and AIDS-defining conditions, whichever occurred earlier (HR=0.918; 95%CI=0.847, 0.994, P=0.036) over 18 months, adjusting for age, gender, marriage, children, and baseline CD4+cell count and HIV-viral load. FTO-SNP rs17817449 was associated with BMI (OR=1.082; 95%CI=1.001, 1.169; P=0.047). Fat mass was associated with the risk alleles of rs1121980 (OR=1.065; 95%CI=1.009, 1.125, P=0.021), rs8050136 (OR=1.078; 95%CI=1.021, 1.140; P=0.007), and rs17817449 (OR=1.086; 95%CI=1.031, 1.145; P=0.002), controlling for age, gender, tribe, total energy intake, and activity. There were no associations of SNPs with markers of disease progression. Leptin levels were positively associated with BMI (β=1.764; 95%CI=0.788, 2.739; P=0.022) and fat mass (β=0.112; 95%CI=0.090, 0.135; P<0.001), but inversely with viral load (β=-0.305; 95%CI=-0.579, -.031; P=0.030). LPS levels were inversely associated with BMI (OR=0.790, 95%CI=0.630, 0.990; P=0.041), and fat mass (OR=0.852, 95%CI=0.757, 0.958; P=0.007) and directly with viral load (OR=2.608, 95%CI=1.111, 6.124; P=0.028), adjusting for age, gender, smoking and %fat mass. In this cohort, overweight/obesity predicted slower HIV-disease progression. Obesity may confer an advantage in maintaining fat stores to support the overactive immune system. FTO-SNPs may contribute to the variation in fat mass; however, they were not associated with HIV-disease progression. Our findings suggest that the obesity paradox may be explained by the association of increased LPS with lower BMI and higher viral load; while viral load decreased with increasing leptin levels. Studies in African populations are needed to clarify whether genetic variation and inflammation mediate the obesity paradox in HIV-disease progression.
Resumo:
Adipose tissue mass in the newborn is determined in part by insulin-like growth factor (IGF)s, which are dependent on the maternal nutritional and metabolic environment during late gestation. The present study was designed to determine whether maternal cold exposure (CE) commencing in mid gestation could modulate some of the adaptive effects of nutrient restriction in late gestation on adipose tissue endocrine sensitivity in the resulting offspring. Twenty eight pregnant sheep were entered into the study and were either shorn, i.e. cold exposed, from 70 days gestation (term = 147 days), or remained unshorn, and were fed either their total calculated metabolisable energy (ME) requirements for body weight and pregnancy from 110 days gestation or 50% of this amount (n=7 per group). Adipose tissue was sampled from the offspring at one day of age and the mRNA abundance for IGF-I, II their receptors (R) and GH secretagogue receptor-1a (GHSR-1a) were determined. CE mothers produced larger offspring with more perirenal adipose tissue, an adaptation prevented by maternal nutrient restriction. Nutrient restriction in unshorn mothers increased IGF-I and IIR mRNA abundance. The mRNA abundances for IGF-I, II and IIR in adipose tissue were reduced by CE, adaptations independent of maternal food intake, whereas CE plus nutrient restriction increased GHSR-1a mRNA. In conclusion, maternal nutrient restriction with or without CE has very different effects on IGF sensitivity of adipose tissue and may act to ensure adequate fat stores are present in the newborn in the face of very different maternal endocrine and metabolic environments.
Resumo:
Introduction: Caustic ingestion (CI) in children and adolescents may lead to esophageal burns, esophageal stenosis and secondary dysphagia. These complications may limit the normal feeding process leading to malnutrition and growth impairment. Aims: Our aim was to evaluate the nutritional status and its association with dysphagia and esophageal stenosis in children with CI. Methods: Sixty-two patients with caustic ingestion treated at a pediatric referral hospital were included in this cross-sectional study. Independent variables were dysphagia/normal swallowing and esophageal stenosis/normal barium-swallow. The dependent variables were growth and nutritional status evaluated by anthropometry. Analysis: χ² test, OR, 95% CI, kappa test and Student's t-test. Results: The average age at the time of CI was 39.7 months; 38.7% of the patients were girls. Endoscopy performed upon admission revealed erosive esophagitis (II-b, III-a, and III-b) in 46 (77.8%) of the patients, dysphagia in twenty-four (38.7%) and esophageal stenosis in forty (64.5%). Both complications occurred simultaneously in 20 children (32.3%, kappa = 0.3, p = 0.014). The z-score of height-for-age was below -2 SD in five children (8.1%). The z score of body mass index (BMI) was < -2 SD in three children (4.8%) and it was above +1 SD in 24.2%. The z-score means of the arm anthropometric indicators of fat stores and muscle mass in both the dysphagia and esophageal stenosis groups were located in the negative area of the z-score curve and their values differed significantly from the z-scores of the non-dysphagia and non-stenosis groups. Conclusions: The proportion of erosive esophagitis, esophageal stenosis and dysphagia was high. Children with dysphagia and/or esophageal stenosis associated with CI had lower fat stores and muscle mass than the cases without esophageal complications.
Resumo:
Dissertação de mest. em Aquacultura, Unidade de Ciências e Tecnologias dos Recursos Aquáticos, Univ. do Algarve, 1997
Resumo:
Studies indicate that overweight and obesity protect against HIV-disease progression in antiretroviral therapy (ART)-naïve patients. We examined retrospectively the relationship of overweight/obesity with HIV-disease progression in ART-naïve HIV+ adults in Botswana in a case-control study with 18-month follow-up, which included 217 participants, 139 with BMI 18.0-24.9 kg/m 2 and 78 with BMI ≥25 kg/m2. Archived plasma samples were used to determine inflammatory markers: leptin and bacterial endotoxin lipopolysaccharide (LPS), and genotype single nucleotide polymorphisms (SNPs) of the Fat Mass and Obesity Associated Gene (FTO). ^ At baseline, BMI was inversely associated with risk for AIDS-defining conditions (HR=0.218; 95%CI=0.068, 0.701, P=0.011), and higher fat mass was associated with reduced risk of the combined outcome of CD4+cell count ≤250/µL and AIDS-defining conditions, whichever occurred earlier (HR=0.918; 95%CI=0.847, 0.994, P=0.036) over 18 months, adjusting for age, gender, marriage, children, and baseline CD4+cell count and HIV-viral load. ^ FTO-SNP rs17817449 was associated with BMI (OR=1.082; 95%CI=1.001, 1.169; P=0.047). Fat mass was associated with the risk alleles of rs1121980 (OR=1.065; 95%CI=1.009, 1.125, P=0.021), rs8050136 (OR=1.078; 95%CI=1.021, 1.140; P=0.007), and rs17817449 (OR=1.086; 95%CI=1.031, 1.145; P=0.002), controlling for age, gender, tribe, total energy intake, and activity. There were no associations of SNPs with markers of disease progression. ^ Leptin levels were positively associated with BMI (β=1.764; 95%CI=0.788, 2.739; P=0.022) and fat mass (β=0.112; 95%CI=0.090, 0.135; P<0.001), but inversely with viral load (β=-0.305; 95%CI=-0.579, -.031; P=0.030). LPS levels were inversely associated with BMI (OR=0.790, 95%CI=0.630, 0.990; P=0.041), and fat mass (OR=0.852, 95%CI=0.757, 0.958; P=0.007) and directly with viral load (OR=2.608, 95%CI=1.111, 6.124; P=0.028), adjusting for age, gender, smoking and %fat mass. ^ In this cohort, overweight/obesity predicted slower HIV-disease progression. Obesity may confer an advantage in maintaining fat stores to support the overactive immune system. FTO-SNPs may contribute to the variation in fat mass; however, they were not associated with HIV-disease progression. Our findings suggest that the obesity paradox may be explained by the association of increased LPS with lower BMI and higher viral load; while viral load decreased with increasing leptin levels. Studies in African populations are needed to clarify whether genetic variation and inflammation mediate the obesity paradox in HIV-disease progression.^
Resumo:
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.
Resumo:
NlmCategory="UNASSIGNED">Preserving β cell function during the development of obesity and insulin resistance would limit the worldwide epidemic of type 2 diabetes (T2DM). Endoplasmic reticulum (ER) calcium (Ca(2+)) depletion induced by saturated free fatty acids and cytokines causes β cell ER stress and apoptosis, but the molecular mechanisms behind these phenomena are still poorly understood. Here, we demonstrate that palmitate-induced sorcin (SRI) down-regulation, and subsequent increases in glucose-6-phosphatase catalytic subunit-2 (G6PC2) levels contribute to lipotoxicity. SRI is a calcium sensor protein involved in maintaining ER Ca(2+) by inhibiting ryanodine receptor activity and playing a role in terminating Ca(2+)-induced Ca(2+) release. G6PC2, a GWAS gene associated with fasting blood glucose, is a negative regulator of glucose-stimulated insulin secretion (GSIS). High fat feeding in mice and chronic exposure of human islets to palmitate decreases endogenous SRI expression while levels of G6PC2 mRNA increase. Sorcin null mice are glucose intolerant, with markedly impaired GSIS and increased expression of G6pc2. Under high fat diet, mice overexpressing SRI in the β cell display improved glucose tolerance, fasting blood glucose and GSIS, whereas G6PC2 levels are decreased and cytosolic and ER Ca(2+) are increased in transgenic islets. SRI may thus provide a target for intervention in T2DM.
Resumo:
The objective was to determine the effects of carbohydrate (CHO) supplementation on exercise-induced hormone responses and post-training intramyocellular lipid stores (IMCL). Twenty-four elite male athletes (28.0 +/- 1.2 years) were randomized to receive CHO (maltodextrin solution) or zero energy placebo solution (control group). The high-intensity running protocol consisted of 10 x 800 m at 100% of the best 3000-m speed (Vm3 km) and 2 x 1000 m maximal bouts in the morning and a submaximal 10-km continuous easy running in the afternoon of day 9. IMCL concentrations were assessed by H-1-MRS before (-day 9) and after training (day 9) in soleus (SO) and tibialis anterior (TA) muscles. Blood hormones were also measured before, during, and post-exercise. The percent change (Delta%) in TA-IMCL was higher in the CHO group (47.9 +/- 24.5 IMCL/Cr) than in the control group (-1.7 +/- 13.1, respectively) (P=.04). Insulin concentrations were higher in the CHO group post-intermittent running compared to control (P=.02). Circulating levels of free fatty acids and GH were lower in the CHO group (P>.01). The decline in performance in the 2nd 1000-m bout was also attenuated in this group compared to control (P<.001 and P=.0035, respectively). The hormonal milieu (higher insulin and lower GH levels) in the CHO group, together with unchanged free fatty acid levels, probably contributed to the increased IMCL stores. This greater energy storage capacity may have improved post-exercise recovery and thus prevented performance deterioration. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids.
Resumo:
The hypotheses that postexercise replenishment of intramyocellular lipids (IMCL) is enhanced by endurance training and that it depends on fat intake were tested. Trained and untrained subjects exercised on a treadmill for 2 h at 50% peak oxygen consumption, reducing IMCL by 26-22%. During recovery, they were fed 55% (high fat) or 15% (low fat) lipid energy diets. Muscle substrate stores were estimated by (1)H (IMCL)- and (13)C (glycogen)-magnetic resonance spectroscopy in tibialis anterior muscle before and after exercise. Resting IMCL content was 71% higher in trained than untrained subjects and correlated significantly with glycogen content. Both correlated positively with indexes of insulin sensitivity. After 30 h on the high-fat diet, IMCL concentration was 30-45% higher than preexercise, whereas it remained 5-17% lower on the low-fat diet. Training status had no significant influence on IMCL replenishment. Glycogen was restored within a day with both diets. We conclude that fat intake postexercise strongly promotes IMCL repletion independently of training status. Furthermore, replenishment of IMCL can be completed within a day when fat intake is sufficient.
Resumo:
Supermarket nutrient movement, a community food consumption measure, aggregated 1,023 high-fat foods, representing 100% of visible fats and approximately 44% of hidden fats in the food supply (FAO, 1980). Fatty acid and cholesterol content of foods shipped from the warehouse to 47 supermarkets located in the Houston area were calculated over a 6 month period. These stores were located in census tracts with over 50% of a given ethnicity: Hispanic, black non-Hispanic, or white non-Hispanic. Categorizing the supermarket census tracts by predominant ethnicity, significant differences were found by ANOVA in the proportion of specific fatty acids and cholesterol content of the foods examined. Using ecological regression, ethnicity, income, and median age predicted supermarket lipid movements while residential stability did not. No associations were found between lipid movements and cardiovascular disease mortality, making further validation necessary for epidemiological application of this method. However, it has been shown to be a non-reactive and cost-effective method appropriate for tracking target foods in populations of groups, and for assessing the impact of mass media nutrition education, legislation, and fortification on community food and nutrient purchase patterns. ^
Resumo:
Background: Tuberculosis is an important cause of wasting. The functional consequences of wasting and recovery may depend on the distribution of lost and gained nutrient stores between protein and fat masses. Objective: The goal was to study nutrient partitioning, ie, the proportion of weight change attributable to changes in fat mass (FM) versus protein mass (PM), during anti mycobacterial treatment. Design: Body-composition measures were made of 21 men and 9 women with pulmonary tuberculosis at baseline and after 1 and 6 mo of treatment. All subjects underwent dual-energy X-ray absorptiometry and deuterium bromide dilution tests, and a four-compartment model of FM, total body water (TBW), bone minerals (BM), and PM was derived. The ratio of PM to FM at any time was expressed as the energy content (p-ratio). Changes in the p-ratio were related to disease severity as measured by radiologic criteria. Results: Patients gained 10% in body weight (P < 0.001) from baseline to month 6. This was mainly due to a 44% gain in FM (P < 0.001); PM, BM, and TBW did not change significantly. Results were similar in men and women. The p-ratio decreased from baseline to month 1 and then fell further by month 6. Radiologic disease severity was not correlated with changes in the p-ratio. Conclusions: Microbiological cure of tuberculosis does not restore PM within 6 mo, despite a strong anabolic response. Change in the p-ratio is a suitable parameter for use in studying the effect of disease on body composition because it allows transformation of such effects into a normal distribution across a wide range of baseline proportion between fat and protein mass.
Resumo:
Bioenergetics differ between males and females of many species. Human females apportion a substantial proportion of energy resources towards gynoid fat storage, to support the energetic burden of reproduction. Similarly, axial calcium accrual is favoured in females compared with males. Nutritional status is a prognostic indicator in cystic fibrosis (CF), but girls and young women are at greater risk of death despite equivalent nutritional status to males. The aim of this study was to compare fat (energy) and calcium stores (bone density) in males and females with CF over a spectrum of disease severity. Methods: Fat as % body weight (fat%) and lumbar spine (LS) and total body (TB) bone mineral density (BMD) were measured using dual absorption X-ray photometry in 127(59M) control and 101(54M) CF subjects, aged 9–25 years. An equation for predicted age at death had been determined using survival data and history of pulmonary function for the whole clinic, based on a trivariate normal model using maximum likelihood methods (1). For the CF group, a disease severity index (predicted age at death) was calculated from the derived equations according to each subjects history of pulmonary function, current age, and gender. Disease severity was classified according to percentile of predicted age at death (‘mild’ ≥75th, ‘moderate’ 25th–75th, ‘severe’ ≤25th percentile). Wt for age z-score was calculated. Serum testosterone and oestrogen were measured in males and females respectively. Fat% and LSBMD were compared between the groups using ANOVA. Results: There was an interaction between disease severity and gender: increasing disease severity was associated with greater deficits in TB (p=0.01), LSBMD (p
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.
Resumo:
Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5% Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K(+) concentration and showed enhanced KATP activity. Tau supplementation normalized K(+)-induced secretion and enhanced glucose-induced Ca(2+) influx in RHT islets. R islets presented lower Ca(2+) influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.