22 resultados para Farnesyltransferase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cathepsin B (CTSB) is overexpressed in tumors of the lung, prostate, colon, breast, and stomach. However, evidence of primary genomic alterations in the CTSB gene during tumor initiation or progression has been lacking. We have found a novel amplicon at 8p22–23 that results in CTSB overexpression in esophageal adenocarcinoma. Amplified genomic NotI–HinfI fragments were identified by two-dimensional DNA electrophoresis. Two amplified fragments (D4 and D5) were cloned and yielded unique sequences. Using bacterial artificial chromosome clones containing either D4 or D5, fluorescent in situ hybridization defined a single region of amplification involving chromosome bands 8p22–23. We investigated the candidate cancer-related gene CTSB, and potential coamplified genes from this region including farnesyl-diphosphate farnesyltransferase (FDFT1), arylamine N-acetyltransferase (NAT-1), lipoprotein lipase (LPL), and an uncharacterized expressed sequence tag (D8S503). Southern blot analysis of 66 esophageal adenocarcinomas demonstrated only CTSB and FDFT1 were consistently amplified in eight (12.1%) of the tumors. Neither NAT-1 nor LPL were amplified. Northern blot analysis showed overexpression of CTSB and FDFT1 mRNA in all six of the amplified esophageal adenocarcinomas analyzed. CTSB mRNA overexpression also was present in two of six nonamplified tumors analyzed. However, FDFT1 mRNA overexpression without amplification was not observed. Western blot analysis confirmed CTSB protein overexpression in tumor specimens with CTSB mRNA overexpression compared with either normal controls or tumors without mRNA overexpression. Abundant extracellular expression of CTSB protein was found in 29 of 40 (72.5%) of esophageal adenocarcinoma specimens by using immunohistochemical analysis. The finding of an amplicon at 8p22–23 resulting in CTSB gene amplification and overexpression supports an important role for CTSB in esophageal adenocarcinoma and possibly in other tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isoprenoid pathway in FRTL-5 thyroid cells was found to be deeply altered on transformation with v-K-ras. A dramatic overall reduction of protein prenylation was found in v-K-ras-transformed cells in comparison with the parent FRTL-5 cells, as shown by labeling cells with [3H]mevalonic acid. This phenomenon was accompanied by a relative increase of p21ras farnesylation and by a decrease of the ratio between the amounts of geranylgeraniol and farnesol bound to prenylated proteins. Analysis of protein prenylation in FRTL-5 cells transformed by a temperature-sensitive mutant of the v-K-ras oncogene indicated that these variations represent an early and specific marker of active K-ras. Conversely, FRTL-5 cells transformed with Harvey-ras showed a pattern of [3H]-mevalonate (MVA)-labeled proteins similar to that of nontransformed cells. The K-ras oncogene activation also resulted in an overall decrease of [3H]-MVA incorporation into isopentenyl-tRNA together with an increase of unprocessed [3H]-MVA and no alteration in [3H]-MVA uptake. The effects of v-K-ras on protein prenylation could be mimicked in FRTL-5 cells by lowering the concentration of exogenous [3H]-MVA whereas increasing the [3H]-MVA concentration did not revert the alterations observed in transformed cells. Accordingly, v-K-ras expression was found to: (i) down-regulate mevalonate kinase; (ii) induce farnesyl-pyrophosphate synthase expression; and (iii) augment protein farnesyltransferase but not protein geranylgeranyl-transferase-I activity. Among these events, mevalonate kinase down-regulation appeared to be related strictly to differential protein prenylation. This study represents an example of how expression of the v-K-ras oncogene, through multiple interferences with the isoprenoid metabolic pathway, may result in the preferential farnesylation of the ras oncogene product p21ras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of neoplastic transformation on the response to genotoxic stress is of significant clinical interest. In this study, we offer genetic evidence that the apoptotic response of neoplastically transformed cells to DNA damage requires RhoB, a member of the Rho family of actin cytoskeletal regulators. Targeted deletion of the rhoB gene did not affect cell cycle arrest in either normal or transformed cells after exposure to doxorubicin or gamma irradiation, but rendered transformed cells resistant to apoptosis. This effect was specific insofar as rhoB deletion did not affect apoptotic susceptibility to agents that do not damage DNA. However, rhoB deletion also affected apoptotic susceptibility to Taxol, an agent that disrupts microtubule dynamics. We have demonstrated that RhoB alteration mediates the proapoptotic and antineoplastic effects of farnesyltransferase inhibitors, and we show here that RhoB alteration is also crucial for farnesyltransferase inhibitors to sensitize neoplastic cells to DNA damage-induced cell death. We found RhoB to be an important determinant of long-term survival in vitro and tumor response in vivo after gamma irradiation. Our findings identify a pivotal role for RhoB in the apoptotic response of neoplastic cells to DNA damage at a novel regulatory point that may involve the actin cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chiral complexes formed by privileged phosphoramidites and silver triflate or silver benzoate are excellent catalysts for the general 1,3-dipolar cycloaddition between azomethine ylides generated from α-amino acid-derived imino esters and nitroalkenes affording with high dr the exo-cycloadducts 4,5-trans-2,5-cis-4-nitroprolinates in high ee at room temperature. In general, better results are obtained using silver rather than copper(II) complexes. In many cases the exo-cycloadducts can be obtained in enantiomerically pure form just after simple recrystallization. The mechanism and the justification of the experimentally observed stereodiscrimination of the process are supported by DFT calculations. These enantiomerically enriched exo-nitroprolinates can be used as reagents for the synthesis of nitropiperidines, by ester reduction and ring expansion, which are inhibitors of farnesyltransferase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase β-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCE Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes through a posttranslational modification process known as prenylation. These studies investigate the roles of one of the prenylation enzymes, farnesyltransferase, as well as the postprenylation processing enzymes in C. neoformans. We demonstrate that the postprenylation processing steps are dispensable for the localization of certain substrate proteins. However, both protein farnesylation and the subsequent postprenylation processing steps are required for full pathogenesis of this fungus.