968 resultados para Facial Expression
Resumo:
Facial expression recognition (FER) has been dramatically developed in recent years, thanks to the advancements in related fields, especially machine learning, image processing and human recognition. Accordingly, the impact and potential usage of automatic FER have been growing in a wide range of applications, including human-computer interaction, robot control and driver state surveillance. However, to date, robust recognition of facial expressions from images and videos is still a challenging task due to the difficulty in accurately extracting the useful emotional features. These features are often represented in different forms, such as static, dynamic, point-based geometric or region-based appearance. Facial movement features, which include feature position and shape changes, are generally caused by the movements of facial elements and muscles during the course of emotional expression. The facial elements, especially key elements, will constantly change their positions when subjects are expressing emotions. As a consequence, the same feature in different images usually has different positions. In some cases, the shape of the feature may also be distorted due to the subtle facial muscle movements. Therefore, for any feature representing a certain emotion, the geometric-based position and appearance-based shape normally changes from one image to another image in image databases, as well as in videos. This kind of movement features represents a rich pool of both static and dynamic characteristics of expressions, which playa critical role for FER. The vast majority of the past work on FER does not take the dynamics of facial expressions into account. Some efforts have been made on capturing and utilizing facial movement features, and almost all of them are static based. These efforts try to adopt either geometric features of the tracked facial points, or appearance difference between holistic facial regions in consequent frames or texture and motion changes in loca- facial regions. Although achieved promising results, these approaches often require accurate location and tracking of facial points, which remains problematic.
Resumo:
Representation of facial expressions using continuous dimensions has shown to be inherently more expressive and psychologically meaningful than using categorized emotions, and thus has gained increasing attention over recent years. Many sub-problems have arisen in this new field that remain only partially understood. A comparison of the regression performance of different texture and geometric features and investigation of the correlations between continuous dimensional axes and basic categorized emotions are two of these. This paper presents empirical studies addressing these problems, and it reports results from an evaluation of different methods for detecting spontaneous facial expressions within the arousal-valence dimensional space (AV). The evaluation compares the performance of texture features (SIFT, Gabor, LBP) against geometric features (FAP-based distances), and the fusion of the two. It also compares the prediction of arousal and valence, obtained using the best fusion method, to the corresponding ground truths. Spatial distribution, shift, similarity, and correlation are considered for the six basic categorized emotions (i.e. anger, disgust, fear, happiness, sadness, surprise). Using the NVIE database, results show that the fusion of LBP and FAP features performs the best. The results from the NVIE and FEEDTUM databases reveal novel findings about the correlations of arousal and valence dimensions to each of six basic emotion categories.
Resumo:
Facial identity and facial expression matching tasks were completed by 5–12-year-old children and adults using stimuli extracted from the same set of normalized faces. Configural and feature processing were examined using speed and accuracy of responding and facial feature selection, respectively. Facial identity matching was slower than face expression matching for all age groups. Large age effects were found on both speed and accuracy of responding and feature use in both identity and expression matching tasks. Eye region preference was found on the facial identity task and mouth region preference on the facial expression task. Use of mouth region information for facial expression matching increased with age, whereas use of eye region information for facial identity matching peaked early. The feature use information suggests that the specific use of primary facial features to arrive at identity and emotion matching judgments matures across middle childhood.
Resumo:
Viewer interests, evoked by video content, can potentially identify the highlights of the video. This paper explores the use of facial expressions (FE) and heart rate (HR) of viewers captured using camera and non-strapped sensor for identifying interesting video segments. The data from ten subjects with three videos showed that these signals are viewer dependent and not synchronized with the video contents. To address this issue, new algorithms are proposed to effectively combine FE and HR signals for identifying the time when viewer interest is potentially high. The results show that, compared with subjective annotation and match report highlights, ‘non-neutral’ FE and ‘relatively higher and faster’ HR is able to capture 60%-80% of goal, foul, and shot-on-goal soccer video events. FE is found to be more indicative than HR of viewer’s interests, but the fusion of these two modalities outperforms each of them.
Resumo:
Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e. g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.
Resumo:
Postnatal maternal depression is associated with difficulties in maternal responsiveness. As most signals arising from the infant come from facial expressions one possible explanation for these difficulties is that mothers with postnatal depression are differentially affected by particular infant facial expressions. Thus, this study investigates the effects of postnatal depression on mothers’ perceptions of infant facial expressions. Participants (15 controls, 15 depressed and 15 anxious mothers) were asked to rate a number of infant facial expressions, ranging from very positive to very negative. Each face was shown twice, for a short and for a longer period of time in random order. Results revealed that mothers used more extreme ratings when shown the infant faces (i.e. more negative or more positive) for a longer period of time. Mothers suffering from postnatal depression were more likely to rate negative infant faces shown for a longer period more negatively than controls. The differences were specific to depression rather than an effect of general postnatal psychopathology—as no differences were observed between anxious mothers and controls. There were no other significant differences in maternal ratings of infant faces showed for short periods or for positive or neutral valence faces of either length. The findings that mothers with postnatal depression rate negative infant faces more negatively indicate that appraisal bias might underlie some of the difficulties that these mothers have in responding to their own infants signals.
Resumo:
The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism.
Resumo:
Objective. Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain–computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Approach. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. Main results. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). Significance. The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.
Resumo:
Interferences from the spatially adjacent non-target stimuli evoke ERPs during non-target sub-trials and lead to false positives. This phenomenon is commonly seen in visual attention based BCIs and affects the performance of BCI system. Although, users or subjects tried to focus on the target stimulus, they still could not help being affected by conspicuous changes of the stimuli (flashes or presenting images) which were adjacent to the target stimulus. In view of this case, the aim of this study is to reduce the adjacent interference using new stimulus presentation pattern based on facial expression changes. Positive facial expressions can be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast will be big enough to evoke strong ERPs. In this paper, two different conditions (Pattern_1, Pattern_2) were used to compare across objective measures such as classification accuracy and information transfer rate as well as subjective measures. Pattern_1 was a “flash-only” pattern and Pattern_2 was a facial expression change of a dummy face. In the facial expression change patterns, the background is a positive facial expression and the stimulus is a negative facial expression. The results showed that the interferences from adjacent stimuli could be reduced significantly (P<;0.05) by using the facial expression change patterns. The online performance of the BCI system using the facial expression change patterns was significantly better than that using the “flash-only” patterns in terms of classification accuracy (p<;0.01), bit rate (p<;0.01), and practical bit rate (p<;0.01). Subjects reported that the annoyance and fatigue could be significantly decreased (p<;0.05) using the new stimulus presentation pattern presented in this paper.
Resumo:
OBJECTIVE: Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. APPROACH: Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. MAIN RESULTS: The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). SIGNIFICANCE: The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.
Resumo:
Background: Some studies have proven that a conventional visual brain computer interface (BCI) based on overt attention cannot be used effectively when eye movement control is not possible. To solve this problem, a novel visual-based BCI system based on covert attention and feature attention has been proposed and was called the gaze-independent BCI. Color and shape difference between stimuli and backgrounds have generally been used in examples of gaze-independent BCIs. Recently, a new paradigm based on facial expression changes has been presented, and obtained high performance. However, some facial expressions were so similar that users couldn't tell them apart, especially when they were presented at the same position in a rapid serial visual presentation (RSVP) paradigm. Consequently, the performance of the BCI is reduced. New Method: In this paper, we combined facial expressions and colors to optimize the stimuli presentation in the gaze-independent BCI. This optimized paradigm was called the colored dummy face pattern. It is suggested that different colors and facial expressions could help users to locate the target and evoke larger event-related potentials (ERPs). In order to evaluate the performance of this new paradigm, two other paradigms were presented, called the gray dummy face pattern and the colored ball pattern. Comparison with Existing Method(s): The key point that determined the value of the colored dummy faces stimuli in BCI systems was whether the dummy face stimuli could obtain higher performance than gray faces or colored balls stimuli. Ten healthy participants (seven male, aged 21–26 years, mean 24.5 ± 1.25) participated in our experiment. Online and offline results of four different paradigms were obtained and comparatively analyzed. Results: The results showed that the colored dummy face pattern could evoke higher P300 and N400 ERP amplitudes, compared with the gray dummy face pattern and the colored ball pattern. Online results showed that the colored dummy face pattern had a significant advantage in terms of classification accuracy (p < 0.05) and information transfer rate (p < 0.05) compared to the other two patterns. Conclusions: The stimuli used in the colored dummy face paradigm combined color and facial expressions. This had a significant advantage in terms of the evoked P300 and N400 amplitudes and resulted in high classification accuracies and information transfer rates. It was compared with colored ball and gray dummy face stimuli.
Resumo:
Sign language animations can lead to better accessibility of information and services for people who are deaf and have low literacy skills in spoken/written languages. Due to the distinct word-order, syntax, and lexicon of the sign language from the spoken/written language, many deaf people find it difficult to comprehend the text on a computer screen or captions on a television. Animated characters performing sign language in a comprehensible way could make this information accessible. Facial expressions and other non-manual components play an important role in the naturalness and understandability of these animations. Their coordination to the manual signs is crucial for the interpretation of the signed message. Software to advance the support of facial expressions in generation of sign language animation could make this technology more acceptable for deaf people. In this survey, we discuss the challenges in facial expression synthesis and we compare and critique the state of the art projects on generating facial expressions in sign language animations. Beginning with an overview of facial expressions linguistics, sign language animation technologies, and some background on animating facial expressions, a discussion of the search strategy and criteria used to select the five projects that are the primary focus of this survey follows. This survey continues on to introduce the work from the five projects under consideration. Their contributions are compared in terms of support for specific sign language, categories of facial expressions investigated, focus range in the animation generation, use of annotated corpora, input data or hypothesis for their approach, and other factors. Strengths and drawbacks of individual projects are identified in the perspectives above. This survey concludes with our current research focus in this area and future prospects.