983 resultados para FUNCTIONAL CONNECTIVITY
Resumo:
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Resumo:
Using combined emotional stimuli, combining photos of faces and recording of voices, we investigated the neural dynamics of emotional judgment using scalp EEG recordings. Stimuli could be either combioned in a congruent, or a non-congruent way.. As many evidences show the major role of alpha in emotional processing, the alpha band was subjected to be analyzed. Analysis was performed by computing the synchronization of the EEGs and the conditions congruent vs. non-congruent were compared using statistical tools. The obtained results demonstrate that scalp EEG ccould be used as a tool to investigate the neural dynamics of emotional valence and discriminate various emotions (angry, happy and neutral stimuli).
Resumo:
Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.
Resumo:
In the cerebral cortex, the activity levels of neuronal populations are continuously fluctuating. When neuronal activity, as measured using functional MRI (fMRI), is temporally coherent across 2 populations, those populations are said to be functionally connected. Functional connectivity has previously been shown to correlate with structural (anatomical) connectivity patterns at an aggregate level. In the present study we investigate, with the aid of computational modeling, whether systems-level properties of functional networks-including their spatial statistics and their persistence across time-can be accounted for by properties of the underlying anatomical network. We measured resting state functional connectivity (using fMRI) and structural connectivity (using diffusion spectrum imaging tractography) in the same individuals at high resolution. Structural connectivity then provided the couplings for a model of macroscopic cortical dynamics. In both model and data, we observed (i) that strong functional connections commonly exist between regions with no direct structural connection, rendering the inference of structural connectivity from functional connectivity impractical; (ii) that indirect connections and interregional distance accounted for some of the variance in functional connectivity that was unexplained by direct structural connectivity; and (iii) that resting-state functional connectivity exhibits variability within and across both scanning sessions and model runs. These empirical and modeling results demonstrate that although resting state functional connectivity is variable and is frequently present between regions without direct structural linkage, its strength, persistence, and spatial statistics are nevertheless constrained by the large-scale anatomical structure of the human cerebral cortex.
Resumo:
Multiple sclerosis (MS), a variable and diffuse disease affecting white and gray matter, is known to cause functional connectivity anomalies in patients. However, related studies published to-date are post hoc; our hypothesis was that such alterations could discriminate between patients and healthy controls in a predictive setting, laying the groundwork for imaging-based prognosis. Using functional magnetic resonance imaging resting state data of 22 minimally disabled MS patients and 14 controls, we developed a predictive model of connectivity alterations in MS: a whole-brain connectivity matrix was built for each subject from the slow oscillations (<0.11Hz) of region-averaged time series, and a pattern recognition technique was used to learn a discriminant function indicating which particular functional connections are most affected by disease. Classification performance using strict cross-validation yielded a sensitivity of 82% (above chance at p<0.005) and specificity of 86% (p<0.01) to distinguish between MS patients and controls. The most discriminative connectivity changes were found in subcortical and temporal regions, and contralateral connections were more discriminative than ipsilateral connections. The pattern of decreased discriminative connections can be summarized post hoc in an index that correlates positively (ρ=0.61) with white matter lesion load, possibly indicating functional reorganisation to cope with increasing lesion load. These results are consistent with a subtle but widespread impact of lesions in white matter and in gray matter structures serving as high-level integrative hubs. These findings suggest that predictive models of resting state fMRI can reveal specific anomalies due to MS with high sensitivity and specificity, potentially leading to new non-invasive markers.
Resumo:
BACKGROUND: Psychogenic non-epileptic seizures (PNES) are involuntary paroxysmal events that are unaccompanied by epileptiform EEG discharges. We hypothesised that PNES are a disorder of distributed brain networks resulting from their functional disconnection.The disconnection may underlie a dissociation mechanism that weakens the influence of unconsciously presented traumatising information but exerts maladaptive effects leading to episodic failures of behavioural control manifested by psychogenic 'seizures'. METHODS: To test this hypothesis, we compared functional connectivity (FC) derived from resting state high-density EEGs of 18 patients with PNES and 18 age-matched and gender-matched controls. To this end, the EEGs were transformed into source space using the local autoregressive average inverse solution. FC was estimated with a multivariate measure of lagged synchronisation in the θ, α and β frequency bands for 66 brain sites clustered into 18 regions. A multiple comparison permutation test was applied to deduce significant between-group differences in inter-regional and intraregional FC. RESULTS: The significant effect of PNES-a decrease in lagged FC between the basal ganglia and limbic, prefrontal, temporal, parietal and occipital regions-was found in the α band. CONCLUSION: We believe that this finding reveals a possible neurobiological substrate of PNES, which explains both attenuation of the effect of potentially disturbing mental representations and the occurrence of PNES episodes. By improving understanding of the aetiology of this condition, our results suggest a potential refinement of diagnostic criteria and management principles.
Resumo:
Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.
Resumo:
La mémoire n’est pas un processus unitaire et est souvent divisée en deux catégories majeures: la mémoire déclarative (pour les faits) et procédurale (pour les habitudes et habiletés motrices). Pour perdurer, une trace mnésique doit passer par la consolidation, un processus par lequel elle devient plus robuste et moins susceptible à l’interférence. Le sommeil est connu comme jouant un rôle clé pour permettre le processus de consolidation, particulièrement pour la mémoire déclarative. Depuis plusieurs années cependant, son rôle est aussi reconnu pour la mémoire procédurale. Il est par contre intéressant de noter que ce ne sont pas tous les types de mémoire procédurale qui requiert le sommeil afin d’être consolidée. Entre autres, le sommeil semble nécessaire pour consolider un apprentissage de séquences motrices (s’apparentant à l’apprentissage du piano), mais pas un apprentissage d’adaptation visuomotrice (tel qu’apprendre à rouler à bicyclette). Parallèlement, l’apprentissage à long terme de ces deux types d’habiletés semble également sous-tendu par des circuits neuronaux distincts; c’est-à-dire un réseau cortico-striatal et cortico-cérébelleux respectivement. Toutefois, l’implication de ces réseaux dans le processus de consolidation comme tel demeure incertain. Le but de cette thèse est donc de mieux comprendre le rôle du sommeil, en contrôlant pour le simple passage du temps, dans la consolidation de ces deux types d’apprentissage, à l’aide de l’imagerie par résonnance magnétique fonctionnelle et d’analyses de connectivité cérébrale. Nos résultats comportementaux supportent l’idée que seul l’apprentissage séquentiel requiert le sommeil pour déclencher le processus de consolidation. Nous suggérons de plus que le putamen est fortement associé à ce processus. En revanche, les performances d’un apprentissage visuomoteur s’améliorent indépendamment du sommeil et sont de plus corrélées à une plus grande activation du cervelet. Finalement, en explorant l’effet du sommeil sur la connectivité cérébrale, nos résultats démontrent qu’en fait, un système cortico-striatal semble être plus intégré suite à la consolidation. C’est-à-dire que l’interaction au sein des régions du système est plus forte lorsque la consolidation a eu lieu, après une nuit de sommeil. En opposition, le simple passage du temps semble nuire à l’intégration de ce réseau cortico-striatal. En somme, nous avons pu élargir les connaissances quant au rôle du sommeil pour la mémoire procédurale, notamment en démontrant que ce ne sont pas tous les types d’apprentissages qui requièrent le sommeil pour amorcer le processus de consolidation. D’ailleurs, nous avons également démontré que cette dissociation de l’effet du sommeil est également reflétée par l’implication de deux réseaux cérébraux distincts. À savoir, un réseau cortico-striatal et un réseau cortico-cérébelleux pour la consolidation respective de l’apprentissage de séquence et d’adaptation visuomotrice. Enfin, nous suggérons que la consolidation durant le sommeil permet de protéger et favoriser une meilleure cohésion au sein du réseau cortico-striatal associé à notre tâche; un phénomène qui, s’il est retrouvé avec d’autres types d’apprentissage, pourrait être considéré comme un nouveau marqueur de la consolidation.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
Cultures of cortical neurons grown on multielectrode arrays exhibit spontaneous, robust and recurrent patterns of highly synchronous activity called bursts. These bursts play a crucial role in the development and topological selforganization of neuronal networks. Thus, understanding the evolution of synchrony within these bursts could give insight into network growth and the functional processes involved in learning and memory. Functional connectivity networks can be constructed by observing patterns of synchrony that evolve during bursts. To capture this evolution, a modelling approach is adopted using a framework of emergent evolving complex networks and, through taking advantage of the multiple time scales of the system, aims to show the importance of sequential and ordered synchronization in network function.