218 resultados para FULLERENE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of the diffusion energy barrier for Li in electrodes is one of the required criteria to achieve better performances in Li ion batteries. Using density functional theory based calculations, we report a pressure induced manifold enhancement of Li-kinetics in bulk FCC fullerene. Scanning of the potential energy surface reveals a diffusion path with a low energy barrier of 0.62 eV, which reduces further under the application of hydrostatic pressure. The pressure induced reduction in the diffusion barrier continues till a uniform volume strain of 17.7% is reached. Further enhancement of strain increases the barrier due to the repulsion caused by C-C bond formation between two neighbouring fullerenes. The decrease in the barrier is attributed to the combined effect of charge transfer triggered by the enhanced interaction of Li with the fullerene as well as the change in profile of the local potential, which becomes more attractive for Li. The lowering of the barrier leads to an enhancement of two orders of magnitude in Li diffusivity at room temperature making pressurized bulk fullerene a promising artificial solid electrolyte interface (SEI) for a faster rechargeable battery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study on self-assembly of anisotropically substituted penta-aryl fullerenes in water has been reported. The penta-phenol-substituted amphiphilic fullerene derivative C60Ph5(OH)(5)],exhibited self-assembled vesicular nanostructures in water under the experimental conditions. The size of the vesicles Was observed to depend upon the kinetics of self-assembly and could be varied from similar to 300 to similar to 70 nm. Our mechanistic study indicated that the self-assembly of C60Ph5(OH)(5) is driven by extensive intermolecular as well as water-mediated hydrogen :bonding along with fullerene-fullerene hydrophobic interaction in water. The cumulative effect of these interactions is responsible for the stability of vesicular structures even on the removal of solvent. The substitution of phenol with anisole resulted in different packing and interaction of the fullerene derivative, as Indicated in the molecular dynamics studies, thus resulting in different self-assembled nanostructures. The hollow vesicles were further encapsulated with a hydrophobic conjugated polymer and water-soluble dye as guest molecules. Such confinement of pi-conjugated polymers in fullerene has significance in bulk heterojunction devices for efficient exciton diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu-4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu-4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu-4:PC61BM solar cell with its vacuum-processed DCV5T-Bu-4:C-60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells. Keywords

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metal-encapsulating silicon fullerene, Eu@Si-20, has been predicted by density functional theory to be by far the most stable fullerene-like silicon structure. The Eu@Si-20 structure is a dodecahedron with D-2h symmetry in which the europium atom occupies the center site. The calculated results show that the europium atom has a large magnetic moment of nearly 7.0 Bohr magnetons. In addition, it was found that a stable "pearl necklace" nanowire, constructed by concatenating a series of Eu@Si-20 units, with the central europium atom, retains the high spin moment. The magnetic structure of the nanowire indicates potential applications in the fields of spintronics and high-density magnetic storage.