883 resultados para FUEL ELEMENTS
Resumo:
This thesis presents a study of the chemical reactions that may occur at the fuel- clad interfaces of fuel elements used in advanced gas-coooled reactors (A.G.R.) The initial investigation involved a study of the inner surfaces of irradiated stainless steel clad and evidence was obtained to show that fission products, in particular tellerium, were associated with reaction products on these surfaces. An accelerated rate of oxidation was observed on the inner surfaces of a failed A.G.R. fuel pin. It is believed that fission product caesium was responsible for this enhancement. A fundamental study of the reaction between 20%Cr/25%Ni/niobium stabilised stainless steel and tellerium was then undertaken over the range 350 - 850 degrees C. Reaction occurred with increasing rapidity over this range and long term exposure at ≤ 750 degrees resulted in intergranular attack of the stainless steel and chromium depletion. The reaction on unoxidised steel surfaces involved the formation of an initial iron-nickel-tellerium layer which subsequently transformed to a chromium telluride product during continued exposure. The thermodynamic stabilities of the steel tellurides were determined to be chromium telluride > nickel telluride > iron telluride. Oxidation of the stainless steel surface prior to tellerium exposure inhibited the reaction. However reaction did occur in regions where the oxide layer had either cracked or spalled.
Resumo:
Fuel elements of PWR type nuclear reactors consist of rod bundles, arranged in a square array, and held by spacer grids. The coolant flows, mainly, axially along the rods. Although such elements are laterally open, experiments are performed in closed type test sections, originating the appearance of subchannels with different geometries. In the present work, utilizing a test section of two bundles of 4x4 pins each, experiments were performed to determine the friction and the grid drag coefficients for the different subchannels and to observe the effect of the grids in the crossflow, in cases of inlet flow maldistribution.
Resumo:
Surveillance of core barrel vibrations has been performed in the Swedish Ringhals PWRs for several years. This surveillance is focused mainly on the pendular motion of the core barrel, which is known as the beam mode. The monitoring of the beam mode has suggested that its amplitude increases along the cycle and decreases after refuelling. In the last 5 years several measurements have been taken in order to understand this behaviour. Besides, a non-linear fitting procedure has been implemented in order to better distinguish the different components of vibration. By using this fitting procedure, two modes of vibration have been identified in the frequency range of the beam mode. Several results coming from the trend analysis performed during these years indicate that one of the modes is due to the core barrel motion itself and the other is due to the individual flow induced vibrations of the fuel elements. In this work, the latest results of this monitoring are presented.
Resumo:
Surveillance of core barrel vibrations has been performed in the Swedish Ringhals PWRs for several years. This surveillance is focused mainly on the pendular motion of the core barrel, which is known as the beam mode. The monitoring of the beam mode has suggested that its amplitude increases along the cycle and decreases after refuelling. In the last 5 years several measurements have been taken in order to understand this behaviour. Besides, a non-linear fitting procedure has been implemented in order to better distinguish the different components of vibration. By using this fitting procedure, two modes of vibration have been identified in the frequency range of the beam mode. Several results coming from the trend analysis performed during these years indicate that one of the modes is due to the core barrel motion itself and the other is due to the individual flow induced vibrations of the fuel elements. In this work, the latest results of this monitoring are presented.
Resumo:
Após o aumento de potência do reator IEA-R1 de 2 MW para 5 MW observou-se um aumento da taxa de corrosão nas placas laterais de alguns elementos combustíveis e algumas dúvidas surgiram com relação ao valor de vazão utilizada nas análises termo-hidráulicas. A fim de esclarecer e medir a distribuição de vazão real pelos elementos combustíveis que compõe o núcleo do reator IEA-R1, um elemento combustível protótipo, sem material nuclear, chamado DMPV-01 (Dispositivo para Medida de Pressão e Vazão), em escala real, foi projetado e construído em alumínio. A vazão no canal entre dois elementos combustíveis é muito difícil de estimar ou ser medida. Esta vazão é muito importante no processo de resfriamento das placas laterais. Este trabalho apresenta a concepção e construção de um elemento combustível instrumentado para medir a temperatura real nestas placas laterais para melhor avaliar as condições de resfriamento do combustível. Quatorze termopares foram instalados neste elemento combustível instrumentado. Quatro termopares em cada canal lateral e quatro no canal central, além de um termopar no bocal de entrada e outro no bocal de saída do elemento. Existem três termopares para medida de temperatura do revestimento e um para a temperatura do fluido em cada canal. Três séries de experimentos, para três configurações distintas, foram realizadas com o elemento combustível instrumentado. Em dois experimentos uma caixa de alumínio foi instalada ao redor do núcleo para reduzir o escoamento transverso entre os elementos combustíveis e medir o impacto na temperatura das placas externas. Dada a tamanha quantidade de informações obtidas e sua utilidade no projeto, melhoria e capacitação na construção, montagem e fabricação de elementos combustíveis instrumentados, este projeto constitui um importante marco no estudo de núcleos de reatores de pesquisa. As soluções propostas podem ser amplamente utilizadas para outros reatores de pesquisa.
Resumo:
"August 1960."
Resumo:
"April 1961."
Resumo:
AEC Report No. TID-6506 Pt. 1, 2nd ed.
Resumo:
"Metals, Ceramics, and Materials (TID-4500, 41st Ed.)."
Resumo:
"December 22, 1959."
Resumo:
"'Feed materials' refers to U metal, fabricated into fuel elements but not clad, and UF₆, both normal isotopic content, suitable for introduction into Pu-production reactors or gaseous diffusion cascades."
Resumo:
"AEC Contract No. AT-(30-1)-1405."
Resumo:
"SCNC" (Series) "Metallurgy and Ceramics"