979 resultados para FRP-concrete bonded joints
Resumo:
A simple procedure to measure the cohesive laws of bonded joints under mode I loading using the double cantilever beam test is proposed. The method only requires recording the applied load–displacement data and measuring the crack opening displacement at its tip in the course of the experimental test. The strain energy release rate is obtained by a procedure involving the Timoshenko beam theory, the specimen’s compliance and the crack equivalent concept. Following the proposed approach the influence of the fracture process zone is taken into account which is fundamental for an accurate estimation of the failure process details. The cohesive law is obtained by differentiation of the strain energy release rate as a function of the crack opening displacement. The model was validated numerically considering three representative cohesive laws. Numerical simulations using finite element analysis including cohesive zone modeling were performed. The good agreement between the inputted and resulting laws for all the cases considered validates the model. An experimental confirmation was also performed by comparing the numerical and experimental load–displacement curves. The numerical load–displacement curves were obtained by adjusting typical cohesive laws to the ones measured experimentally following the proposed approach and using finite element analysis including cohesive zone modeling. Once again, good agreement was obtained in the comparisons thus demonstrating the good performance of the proposed methodology.
Resumo:
Adhesive bonding of components has become more efficient in recent years due to the developments in adhesive technology, which has resulted in higher peel and shear strengths, and also in allowable ductility up to failure. As a result, fastening and riveting methods are being progressively replaced by adhesive bonding, allowing a big step towards stronger and lighter unions. However, single-lap bonded joints still generate substantial peel and shear stress concentrations at the overlap edges that can be harmful to the structure, especially when using brittle adhesives that do not allow plasticization in these regions. In this work, a numerical and experimental study is performed to evaluate the feasibility of bending the adherends at the ends of the overlap for the strength improvement of single-lap aluminium joints bonded with a brittle and a ductile adhesive. Different combinations of joint eccentricity were tested, including absence of eccentricity, allowing the optimization of the joint. A Finite Element stress and failure analysis in ABAQUS® was also carried out to provide a better understanding of the bent configuration. Results showed a major advantage of using the proposed modification for the brittle adhesive, but the joints with the ductile adhesive were not much affected by the bending technique.
Resumo:
An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.
Resumo:
Research on adhesive joints is arousing increasing interest in aerospace industry. Incomplete knowledge of fatigue in adhesively bonded joints is a major obstacle to their application. The prediction of the disbonding growth is yet an open question. This thesis researches the influence of the adhesive thickness on fatigue disbond growth. Experimental testing on specimens with different thickness has been performed. Both a conventional approach based on the strain energy release rate and an approach based on cyclic strain energy are provided. The inadequacy of the former approach is discussed. Outcomes from tests support the idea of correlating the crack growth rate to the cyclic strain energy. In order to push further the study, a 2D finite element model for the prediction of disbond growth under quasi-static loading has been developed and implemented in Abaqus. Numerical simulations have been conducted with different values of the adhesive thickness. The results from tests and simulations are in accordance with each other. According to them, no dependence of disbonding on the adhesive thickness has been evidenced.
Resumo:
The use of fiber-reinforced polymer (FRP) composites for strengthening, repairing, or rehabilitating concrete structures has become more and more popular in the last 10 years. Irrespective of the type of strengthening used, design is conditioned, among others, by concrete-composite bond failure, normally attributed to stress at the interface between these two materials. Single shear, double shear, and notched beam tests are the bond tests most commonly used by the scientific community to estimate bond strength, effective length, and the bond stress-slip relationship. The present paper discusses the effect of concrete strength and adhesive thickness on the results of beam tests, which reproduce debonding conditions around bending cracks much more accurately. The bond stress-slip relationship was analyzed in a cross section near the inner edge, where stress was observed to concentrate. The ultimate load and the bond stress-slip relationship were visibly affected by concrete strength. Adhesive thickness, in turn, was found to have no significant impact on low-strength concrete but a somewhat greater effect on higher strength materials.
Resumo:
Bonded joint specimens were fabricated from composite adherends and either an epoxy or a urethane adhesive. In mixed-mode fracture experiments, the epoxy bonded specimens generally failed by subinterfacial fracture in the composite, while specimens bonded with urethane failed very close to the adhesive/substrate interface. For the epoxy bonded specimens, fracture toughness did not change significantly with mode-mix, but for urethane bonded joints, fracture toughness increased with increasing shear load. Finite element analysis, which modeled specimens bonded with the two adhesives, showed similar trends. The different toughening behaviors for the two bonded joints can be attributed to dissipation of energy through inelastic deformation, which was insignificant in the epoxy-bonded joints but substantial when the urethane was used as the bonding agent.
Resumo:
Catastrophic failure from intentional terrorist attacks on surface transportation infrastructure could he detrimental to the society. In order to minimize the vulnerabilities and to ensure a safe transportation system, the issue of security for transportation structures, primarily bridges, which are subjected to man-made hazards is investigated in this study. A procedure for identifying and prioritizing "critical bridges" using a screening and prioritization processes is established. For each of the "critical" bridges, a systematic risk-based assessment approach is proposed that takes into account the combination of threat occurrence likelihood, its consequences, and the socioeconomic importance of the bridge. A series of effective security countermeasures are compiled in the four categories of deterrence, detection, defense and mitigation to help reduce the vulnerability of critical bridges. The concepts of simplified equivalent I-shape cross section and virtual materials are proposed for integration into a nonlinear finite element model, which helps assess the performance of reinforced concrete structures with and without composite retrofit or hardening measures under blast loading. A series of parametric studies are conducted for single column and two-column pier frame systems as well as for an entire bridge. The parameters considered include column height, column type, concrete strength, longitudinal steel reinforcement ratio, thickness, fiber angle and tensile strength of the fiber reinforced polymer (FRP) tube, shape of the cross section, damping ratio and different bomb sizes. The study shows the benefits of hardening with composites against blast loading. The effect of steel reinforcement on blast resistance of the structure is more significant than the effect of concrete compressive strength. Moreover, multiple blasts do not necessarily lead to a more severe destruction than a single detonation at a strategically vulnerable location on the bridges.
Resumo:
The technique of externally bonding fiber-reinforced polymer (FRP) composites has become very popular worldwide for retrofitting existing reinforced concrete (RC) structures. Debonding of FRP from the concrete substrate is a typical failure mode in such strengthened structures. The bond behavior between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behavior has been extensively investigated experimentally, commonly using a single or double shear test of the FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with numerical simulation, chiefly due to difficulties in the accurate modeling of the complex behavior of concrete. This paper presents a simple but robust finite-element (FE) model for simulating the bond behavior in the entire debonding process for the single shear test. A concrete damage plasticity model is proposed to capture the concrete-to-FRP bond behavior. Numerical results are in close agreement with test data, validating the model. In addition to accuracy, the model has two further advantages: it only requires the basic material parameters (i.e., no arbitrary user-defined parameter such as the shear retention factor is required) and it can be directly implemented in the FE software ABAQUS.
Resumo:
The technique of externally bonding fibre reinforced polymer (FRP) composites has been becoming popular worldwide for retrofitting existing reinforced concrete (RC) structures. A major failure mode in such strengthened structures is the debonding of FRP from the concrete substrate. The bond behaviour between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behaviour has been extensively investigated experimentally, commonly using the pull-off test of FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with the numerical simulation of this bond behaviour, chiefly due to difficulties in accurately modelling the complex behaviour of concrete. This paper proposes a robust finite element (FE) model for simulating the bond behaviour in the entire loading process in the pull-off test. A concrete damage plasticity model based on the plastic degradation theory is proposed to overcome the weakness of the elastic degradation theory which has been commonly adopted in previous studies. The model produces results in very close agreement with test data. © Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011.