912 resultados para FORCES CONSISTENT
Resumo:
We use the density functional theory/local-density approximation (DFT/LDA)-1/2 method [L. G. Ferreira , Phys. Rev. B 78, 125116 (2008)], which attempts to fix the electron self-energy deficiency of DFT/LDA by half-ionizing the whole Bloch band of the crystal, to calculate the band offsets of two Si/SiO(2) interface models. Our results are similar to those obtained with a ""state-of-the-art"" GW approach [R. Shaltaf , Phys. Rev. Lett. 100, 186401 (2008)], with the advantage of being as computationally inexpensive as the usual DFT/LDA. Our band gap and band offset predictions are in excellent agreement with experiments.
Resumo:
This study reports for the first time an estimation of the internal net joint forces and torques on adults` lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects` apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water`s depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Following the approach developed for rods in Part 1 of this paper (Pimenta et al. in Comput. Mech. 42:715-732, 2008), this work presents a fully conserving algorithm for the integration of the equations of motion in nonlinear shell dynamics. We begin with a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, allowing for an extremely simple update of the rotational variables within the scheme. The weak form is constructed via non-orthogonal projection, the time-collocation of which ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that general hyperelastic materials (and not only materials with quadratic potentials) are permitted in a totally consistent way. Spatial discretization is performed using the finite element method and the robust performance of the scheme is demonstrated by means of numerical examples.
Resumo:
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A great deal of works has been developed on the spar vortex-induced motion (VIM) issue. There are, however, very few published works concerning VIM of monocolumn platforms, partly due to the fact that the concept is fairly recent and the first unit was only installed last year. In this context, a meticulous study on VIM for this type of platform concept is presented here. Model test experiments were performed to check the influence of many factors on VIM, such as different headings, wave/current coexistence, different drafts, suppression elements, and the presence of risers. The results of the experiments presented here are motion amplitudes in both in-line and transverse directions, forces and added-mass coefficients, ratios of actual oscillation and natural periods, and motions in the XY plane. This is, therefore, a very extensive and important data set for comparisons and validations of theoretical and numerical models for VIM prediction. [DOI: 10.1115/1.4001440]
Resumo:
In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
To translate and transfer solution data between two totally different meshes (i.e. mesh 1 and mesh 2), a consistent point-searching algorithm for solution interpolation in unstructured meshes consisting of 4-node bilinear quadrilateral elements is presented in this paper. The proposed algorithm has the following significant advantages: (1) The use of a point-searching strategy allows a point in one mesh to be accurately related to an element (containing this point) in another mesh. Thus, to translate/transfer the solution of any particular point from mesh 2 td mesh 1, only one element in mesh 2 needs to be inversely mapped. This certainly minimizes the number of elements, to which the inverse mapping is applied. In this regard, the present algorithm is very effective and efficient. (2) Analytical solutions to the local co ordinates of any point in a four-node quadrilateral element, which are derived in a rigorous mathematical manner in the context of this paper, make it possible to carry out an inverse mapping process very effectively and efficiently. (3) The use of consistent interpolation enables the interpolated solution to be compatible with an original solution and, therefore guarantees the interpolated solution of extremely high accuracy. After the mathematical formulations of the algorithm are presented, the algorithm is tested and validated through a challenging problem. The related results from the test problem have demonstrated the generality, accuracy, effectiveness, efficiency and robustness of the proposed consistent point-searching algorithm. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Background-In adult human heart, both beta(1)- and beta(2)-adrenergic receptors mediate hastening of relaxation; however, it is unknown whether this also occurs in infant heart. We compared the effects of stimulation of beta(1)- and beta(2)-adrenergic receptors on relaxation and phosphorylation of phospholamban and troponin I in ventricle obtained from infants with tetralogy of Fallot. Methods and Results-Myocardium dissected from the right ventricular outflow tract of 27 infants (age range 2-1/2 to 35 months) with tetralogy of Fallot was set up to contract 60 times per minute. Selective stimulation of beta(1)-adrenergic receptors with (-)-norepinephrine (NE) and beta(2)-adrenergic receptors with (-)-epinephrine (EPI) evoked phosphorylation of phospholamban (at serine-16 and threonine-17) and troponin I and caused concentration-dependent increases in contractile force (-log EC50 [mol/L] NE 5.5+/-0.1, n=12; -EPI 5.6+/-0.1, n=13 patients), hastening of the time to reach peak force (-log EC50 [mol/L] NE 5.8+/--0.2; EPI 5.8+/-0.2) and 50% relaxation (-log EC50 [mol/L] NE 5.7+/-0.2: EPI 5.8+/-0.1), Ventricular membranes from Fallot infants, labeled with (-)-[I-125]-cyanopindolol, revealed a greater percentage of beta(1)- (71%) than beta(2)-adrenergic receptors (29%). Binding of (-)-epinephrine to beta(2)-receptors underwent greater GTP shifts than binding of (-)-norepinephrine to beta(1)-receptors. Conclusions-Despite their low density, beta(2)-adrenergic receptors are nearly as effective as beta(1)-adrenergic receptors of infant Fallot ventricle in enhancing contraction, relaxation, and phosphorylation of phospholamban and troponin I, consistent with selective coupling to G(s)-protein.
Resumo:
Addition of a load to a moving upper limb produces a perturbation of the trunk due to transmission of mechanical forces. This experiment investigated the postural response of the trunk muscles in relation to unexpected limb loading. Subjects performed rapid, bilateral shoulder flexion in response to a stimulus. In one third of trials, an unexpected load was added bilaterally to the upper limbs in the first third of the movement. Trunk muscle electromyography, intra-abdominal pressure and upper limb and trunk motion were measured. A short-latency response of the erector spinae and transversus abdominis muscles occurred similar to 50 ms after the onset of the limb perturbation that resulted from addition of the load early in the movement and was coincident with the onset of the observed perturbation at the trunk. The results provide evidence of initiation of a complex postural response of the trunk muscles that is consistent with mediation by afferent input from a site distant to the lumbar spine, which may include afferents of the upper limb.
Resumo:
Interaction forces between protein inclusion bodies and an air bubble have been quantified using an atomic force microscope (AFM). The inclusion bodies were attached to the AFM tip by covalent bonds. Interaction forces measured in various buffer concentrations varied from 9.7 nN to 25.3 nN (+/- 4-11%) depending on pH. Hydrophobic forces provide a stronger contribution to overall interaction force than electrostatic double layer forces. It also appears that the ionic strength affects the interaction force in a complex way that cannot be directly predicted by DLVO theory. The effects of pH are significantly stronger for the inclusion body compared to the air bubble. This study provides fundamental information that will subsequently facilitate the rational design of flotation recovery system for inclusion bodies. It has also demonstrated the potential of AFM to facilitate the design of such processes from a practical viewpoint.
Resumo:
Common sense tells us that the future is an essential element in any strategy. In addition, there is a good deal of literature on scenario planning, which is an important tool in considering the future in terms of strategy. However, in many organizations there is serious resistance to the development of scenarios, and they are not broadly implemented by companies. But even organizations that do not rely heavily on the development of scenarios do, in fact, construct visions to guide their strategies. But it might be asked, what happens when this vision is not consistent with the future? To address this problem, the present article proposes a method for checking the content and consistency of an organization`s vision of the future, no matter how it was conceived. The proposed method is grounded on theoretical concepts from the field of future studies, which are described in this article. This study was motivated by the search for developing new ways of improving and using scenario techniques as a method for making strategic decisions. The method was then tested on a company in the field of information technology in order to check its operational feasibility. The test showed that the proposed method is, in fact, operationally feasible and was capable of analyzing the vision of the company being studied, indicating both its shortcomings and points of inconsistency. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fear relevance, the potential of a stimulus to become quickly associated with fear, is a characteristic assumed to have an evolutionary basis and to result in preferential processing. Previous research has shown that fear relevant stimuli share a number of characteristics, negative valence and preferential identification in a visual search task, for instance. The present research examined whether these two characteristics can be acquired by non-fear relevant stimuli (geometric shapes) as a result of Pavlovian fear conditioning. Two experiments employed an aversive learning paradigm with geometric shape CSs and a shock US, with stimulus ratings, affective priming and visual search performance assessed before and after acquisition and after extinction. Differential electrodermal responses, larger during CS1 than CS, were present during acquisition but not during extinction. Affective priming results suggest that the CS1 acquired negative valence during acquisition, which was lost during extinction. However, negative valence as indexed by more negative ratings for CS1 than for CS shapes seemed to survive extinction. Preferential attentional processing as indexed by faster detection of CS1 among CS shapes than vice versa on the visual search task also remained. The current research confirmed that characteristics of fear relevant stimuli can be acquired in an aversive learning episode and that they may be extinguished. This supports the proposal that fear relevance may be malleable through learning.
Resumo:
We assemble a database consisting of 52 regulatory decisions made by seven different regulators across five different industries. We examine how the proportion of firms' revenue requirements that were disallowed by the regulator vary by regulator, industry and time. Despite the differences in the implementation of price regulation across industries and across jurisdictions in Australia, outcomes are surprisingly consistent. For example, we show that it is not possible to reject the hypothesis that the regulators outcomes in South Australia, New South Wales, the Australian Capital Territory and Victoria are similar despite the different regulatory approaches undertaken in these jurisdictions.
Resumo:
To understand the dynamic mechanisms of the mechanical milling process in a vibratory mill, it is necessary to determine the characteristics of the impact forces associated with the collision events. However, it is difficult to directly measure the impact force in an operating mill. This paper describes an inverse technique for the prediction of impact forces from acceleration measurements on a vibratory ball mill. The characteristics of the vibratory mill have been investigated by the modal testing technique, and its system modes have been identified. In the modelling of the system vibration response to the impact forces, two modal equations have been used to describe the modal responses. The superposition of the modal responses gives rise to the total response of the system. A method based on an optimisation approach has been developed to predict the impact forces by minimising the difference between the measured acceleration of the vibratory ball mill and the predicted acceleration from the solution of the modal equations. The predicted and measured impact forces are in good agreement. Copyright (C) 1996 Elsevier Science Ltd.