982 resultados para FORCE PRODUCTION
Resumo:
Liver transplantation is the unique treatment for several end-stage diseases. Familial Amiloidotic Polineuropathy (FAP) is a neurodegenerative disease related with systemic deposition of amyloidal fiber mainly on peripheral nervous system, clinically translated by an autonomous sensitive-motor neuropathy with severe functional limitations in some cases. The unique treatment for FAP disease is a liver transplant with a very aggressive medication to muscle metabolism and force production. To our knowledge there are no quantitative characterizations of body composition, strength or functional capacity in this population.
Resumo:
Liver transplantation is the unique treatment for several end stage diseases. Familial Amiloidotic Polineuropathy (FAP) is a neurodegenerative disease related with systemic deposition of amyloidal fibre mainly on peripheral nervous system, clinically translated by an autonomous sensitive-motor neuropathy with severe functional limitations in some cases. The unique treatment for FAP disease is a liver transplant with a very aggressive medication to muscle metabolism and force production. To our knowledge there are no quantitative characterizations of body composition, strength or functional capacity in this population. The purpose of this study was to compare levels of specific strength (isometric strength adjusted by lean mass or muscle quality) and functional capacity (meters in 6 minutes walk test) between FAP patients after a liver transplant (4.1±2 months after transplant surgery) (FAPT) and a healthy group (HG).
Resumo:
Objectivos: Avaliar a força muscular bilateralmente ao nível dos músculos quadricípite e isquiotibiais em atletas da equipa nacional Portuguesa de Taekwondo. Amostra: Foi constituída por 6 dos 10 elementos que constituem a população de Taekwondistas do sexo masculino inscritos na Federação Portuguesa de Taekwondo, com presença regular nas selecções nacionais todos com um mínimo de 6 anos de prática. Os atletas apresentaram uma idade média 17,5 (+ 1,9) anos, com uma altura de 181,2 (+ 2,8) cm e com uma massa corporal total de 74,1 (+ 11,6) kg Metodologia: Procedeu-se à avaliação da força muscular dos participantes ao nível da musculatura flexora e extensora do joelho, no dinamómetro Biodex System 4, a uma velocidade de execução de 60º/s (4 repetições) e de 180º/s (10 repetições) com 60 segundos de intervalo, numa amplitude de movimento compreendida entre os 90 e os 0 graus. Todos os dados foram tratados no programa SPSS, versão 18.0, com um nível de significância de 0,05. Resultados: Verificou-se a existência de diferenças estatísticas significativas na análise do Peak Torque (p=0,023) aos 180º/seg para os flexores do joelho e do Peak Torque 30º (p=0,023) aos 180º/seg na acção dos extensores e flexores (p=0,037) do joelho, entre o membro dominante e não dominante. Constatou-se ainda a existência de um rácio Isquiotibiais/Quadricípite (55%) dentro dos valores normais do equilíbrio muscular do joelho. Discussão/Conclusão: Concluiu-se que foram encontradas diferenças nos níveis de força obtidos entre o membro dominante e não dominante, no entanto não foram encontrados desequilíbrios musculares clinicamente significativos. Assim como na relação Isquiotibiais/Quadricípite do próprio membro, não apontando por isso risco de lesão articular do joelho.
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: 17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: ̴17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.
Resumo:
Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.
Resumo:
We assessed neuromuscular fatigue and recovery of the plantar flexors after playing football with or without severe heat stress. Neuromuscular characteristics of the plantar flexors were assessed in 17 male players at baseline and ∼30 min, 24, and 48 h after two 90-min football matches in temperate (∼20 °C and 55% rH) and hot (∼43 °C and 20% rH) environments. Measurements included maximal voluntary strength, muscle activation, twitch contractile properties, and rate of torque development and soleus EMG (i.e., root mean square activity) rise from 0 to 30, -50, -100, and -200 ms during maximal isometric contractions for plantar flexors. Voluntary activation and peak twitch torque were equally reduced (-1.5% and -16.5%, respectively; P < 0.05) post-matches relative to baseline in both conditions, the latter persisting for at least 48 h, whereas strength losses (∼5%) were not significant. Absolute explosive force production declined (P < 0.05) 30 ms after contraction onset independently of condition, with no change at any other epochs. Globally, normalized rate of force development and soleus EMG activity rise values remained unchanged. In football, match-induced alterations in maximal and rapid torque production capacities of the plantar flexors are moderate and do not differ after competing in temperate and hot environments.
Resumo:
Muscular function of the neck region may be of importance for the etiology of headache, especially of tension-type headache. However, very few data exist on the association of neck muscle function with different types of headache in adolescents. The main aim of the study was to examine the association of neck muscle function with adolescent headache. The associations between leisure time activities, endurance strength of the upper extremities (UE endurance) and mobility of the neck-shoulder region and adolescent headache were studied. In addition, the associations of force production, EMG/force ratio, co-activation and fatigue characteristics, and cross-sectional area (CSA) of neck muscles with adolescent headache were studied. The study is part of a population-based cohort study of 12-year-old children with and without headache. The study had five phases (years 1998-2003). At the age of 13 years, a sample of 183 adolescents (183/311) participated in endurance strength and mobility measurements of the neck-shoulder region. In addition, the type and level of physical and other leisure activity were elicited with open and structured questions. At the age of 17 years, a random sample of 89 adolescents (89/202) participated in force and EMG measurements of the neck-shoulder muscles. In addition, at the age of 17 years, a sample of 65 adolescents (65/89) participated in CSA measurements of the neck muscles. At the age of 13 years, intensive participation in overall sports activity was associated with migraine. Frequent computer use was associated both with migraine and tension-type headache. The type of sports or other leisure activity classified them on the basis of body loading was not associated with headache type. In girls, low UE endurance of both sides, and low cervical rotation of the dominant side, were associated with tension-type headache, and low UE endurance of non-dominant side with migraine. In boys, no associations occurred between UE endurance and mobility variables and headache types. At the age of 17 years, in girls, high EMG/force ratios between the EMG of the left agonist sternocleidomastoid muscle (SCM) and maximal neck flexion and neck rotation force to the right side as well as high co-activation of right antagonist cervical erector spinae (CES) muscles during maximal neck flexion force were associated with migraine-type headache. In girls, neck force production was not associated with headache types but low left shoulder flexion force was associated with tension-type headache. In boys, no associations were found between EMG and force variables and headache. Increased SCM muscles fatigue of both sides was associated with tension-type headache. In boys, the small CSA of the right SCM muscle and, in girls, of combined right SCM and scalenus muscles was associated with tension-type headache. Similarly, in boys, the large CSA of the right SCM muscle, of the combined right SCM and scalenus muscles, of the left semispinalis capitis muscle, of the combined left semispinalis and splenius muscles was associated with migraine. No other differences in the CSA of neck flexion or extension muscles were found. Differences in the neuromucular function of the neck-shoulder muscles were associated with adolescent headache, especially in girls. Differences in the cross-sectional area of unilateral neck muscles were associated with headache, especially in boys. Differences in the neuromuscular function and in the cross-sectional area of the neck muscles also occurred between different types of headache. It remains to be established whether the findings are primary or secondary to adolescent migraine and tension headache. Keywords: adolescent, cross-sectional area, electromyography, endurance strength, fatigue, force, headache, leisure time activity, migraine, mobility, neck muscles, tension-type headache
Resumo:
The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the SR-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the “basic pole pair” in linear-movement transversal-flux switchedreluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis.
Resumo:
Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+-dependent process. Fatigue is the force decrease observed after a period of repeated muscle stimulation. Fatigue has also been associated with a Ca2+-related mechanism: decreased peak Ca2+ concentration in the myoplasm is observed during fatigue. This decrease is probably due to an inhibition of Ca2+ release from the sarcoplasmic reticulum. Although potentiation and fatigue have opposing effects on force production in skeletal muscle, these two presumed mechanisms can coexist. When peak myoplasmic Ca2+ concentration is depressed, but myosin light chains are relatively phosphorylated, the force response can be attenuated, not different, or enhanced, relative to previous values. In circumstances where there is interaction between potentiation and fatigue, care must be taken in interpreting the contractile responses.
Resumo:
Skeletal muscle force production following repetitive contractions is preferentially reduced when muscle is evaluated with low-frequency stimulation. This selective impairment in force generation is called low-frequency fatigue (LFF) and could be dependent on the contraction type. The purpose of this study was to compare LFF after concentric and eccentric maximal and submaximal contractions of knee extensor muscles. Ten healthy male subjects (age: 23.6 ± 4.2 years; weight: 73.8 ± 7.7 kg; height: 1.79 ± 0.05 m) executed maximal voluntary contractions that were measured before a fatigue test (pre-exercise), immediately after (after-exercise) and after 1 h of recovery (after-recovery). The fatigue test consisted of 60 maximal (100%) or submaximal (40%) dynamic concentric or eccentric knee extensions at an angular velocity of 60°/s. The isometric torque produced by low- (20 Hz) and high- (100 Hz) frequency stimulation was also measured at these times and the 20:100 Hz ratio was calculated to assess LFF. One-way ANOVA for repeated measures followed by the Newman-Keuls post hoc test was used to determine significant (P < 0.05) differences. LFF was evident after-recovery in all trials except following submaximal eccentric contractions. LFF was not evident after-exercise, regardless of exercise intensity or contraction type. Our results suggest that low-frequency fatigue was evident after submaximal concentric but not submaximal eccentric contractions and was more pronounced after 1-h of recovery.
Resumo:
With repeated activity, force production, rate of force production, and relaxation time are impaired. These are characteristics ofa fatigued muscle (Vandenboom, 2004). However, brief bouts of near maximal to maximal activity results in the increased ability of the muscle to generate force, termed post activation potentiation (P AP)(V andervoort et aI., 1983). The purpose of the present study was to characterize motor unit firing rate (MUFR) in the unfatigued, potentiated tibialis anterior (TA). Using a quadrifilar needle electrode, MUFR was measured during a 5s 50% MVC in which the TA was either potentiated or unpotentiated; monopolar electrodes measured surface parameters. A lOs MVC was used to potentiate the muscle. Firing rate decreased significantly from 20.15±2.9Opps to 18.27±2.99pps, while mean power frequency decreased significantly from 60. 13±7.75 Hz to 53.62±8.56 Hz. No change in root mean square (RMS) was observed. Therefore, in the present study, MUFR decreases in response to a potentiated TA.
Resumo:
Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.
Resumo:
Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10(-5) and 10(-4) M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10(-5) M OA increased synaptically driven contractions by ≈ 1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.
Resumo:
Activated by elevations in myoplasmic calcium concentration, myosin light chain kinase (skMLCK) phosphorylates the regulatory light chains (RLCs) of fast muscle myosin. This covalent modification potentiates force production, but requires an investment of ATP. Our objective was to investigate the effect of RLC phosphorylation on the contractile economy (mechanical output:metabolic input) of fast twitch skeletal muscle. Extensor digitorum longus muscles isolated from Wildtype and skMLCK-/- mice mounted in vitro (25°C) were subjected to repetitive low-frequency stimulation (10Hz,15s) known to cause activation of skMLCK, and staircase potentiation of force. With a 3-fold increase in RLC phosphate content, Wildtype generated 44% more force than skMLCK-/- muscles over the stimulation period (P = .002), without an accompanied increase in energy cost (P = .449). Overall, the contractile economy of Wildtype muscles, with an intact RLC phosphorylation mechanism, was 73% greater than skMLCK /- muscles (P = .043), demonstrating an important physiological function of skMLCK during repetitive contractile activity.