914 resultados para FOLLICLE-STIMULATING-HORMONE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation. In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation. Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares. In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3). In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing evidence supports GnRH agonists to be an effective treatment to preserve ovarian function during chemotherapy, but the initial flare-up of FSH during the first week after GnRH agonist application still limits its use. The combination of GnRH agonists with GnRH antagonists might solve this problem to some extent as the addition of GnRH antagonists at least significantly reduces the FSH flare-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of superovulatory treatment (follicle stimulating hormone [FSH] versus human menopausal gonadotropin [HMG]) and of route of administration (intramuscular versus intravenous) of prostaglandin F2a (PGF2a) on hormonal profiles were determined in 32 Angus x Hereford heifers for breeding and subsequent embryo collection and transfer. Heifers were superstimulated either with FSH (total of 26 milligrams) or HMG (total of 1,050 international units) beginning on days 9 to 12 of an estrous cycle and PGF2a (40 milligrams) was administered at 60 and 72 hours after the beginning of superovulatory treatments. Heifers were artificially inseminated three times at 12-hour intervals beginning 48 hours after PGF2a treatment. Blood serum samples were collected immediately before treatments began and at frequent intervals until embryo collection 288 hours later. Concentrations of luteinizing hormone (LH) and FSH were not affected by hormone treatments, route of PGF2a injection, or interactions between them. Estradiol-17ß (E2-17ß) levels were higher in HMG- than in FSH-treated heifers 60 hours after gonadotropin treatment. Peak concentration of E2-17ß occurred earlier in HMGthan in FSH-treated heifers and earlier in heifers injected with PGF2a intramuscularly than those injected intravenously. Progesterone concentrations were not influenced by treatment or route of PGF2a administration. The progesterone:E2-17ß ratio was higher in FSH- than in HMG-treated heifers 24 hours after the LH peak. The high steroid hormone concentrations in superovulated beef heifers before and after ovulation may lead to asynchrony between stages of embryonic development, a situation that may interfere with the pregnancy outcome of superovulated embryos in recipient animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies indicated that there is a separate hypothalamic control of follicle-stimulating hormone (FSH) release distinct from that of luteinizing hormone (LH). An FSH-releasing factor (FSHRF) was purified from rat and sheep hypothalami, but has not been isolated. We hypothesized that FSHRF might be an analogue of mammalian luteinizing hormone-releasing hormone (m-LHRH) and evaluated the activity of many analogues of m-LHRH and of the known LHRHs found in lower forms. Here we demonstrate that lamprey (l) LHRH-III has a potent, dose-related FSH- but not LH-releasing action on incubated hemipituitaries of male rats. l-LHRH-I on the other hand, had little activity to release either FSH or LH. m-LHRH was equipotent to l-LHRH-III to release FSH, but also had a high potency to release LH in contrast to l-LHRH-III that selectively released FSH. Chicken LHRH-II had considerable potency to release both LH and FSH, but no selectivity in its action. Salmon LHRH had much less potency than the others tested, except for l-LHRH-I, and no selectivity in its action. Because ovariectomized, estrogen, progesterone-treated rats are a sensitive in vivo assay for FSH- and LH-releasing activity, we evaluated l-LHRH-III in this assay and found that it had a completely selective stimulatory effect on FSH release at the two doses tested (10 and 100 pmols). Therefore, l-LHRH-III is a highly potent and specific FSH-releasing peptide that may enhance fertility in animals and humans. It may be the long sought after m-FSHRF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R −/− mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R −/− mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription factor CREM (cAMP-responsive element modulator) plays a pivotal role in the nuclear response to cAMP in neuroendocrine cells. We have previously shown that follicle-stimulating hormone (FSH) directs CREM expression in male germ cells. The physiological importance of FSH in Sertoli cell function prompted us to analyze its effect on CREM expression in these cells. We observed a dramatic and specific increase in the CREM isoform ICER (inducible cAMP early repressor) expression, with a peak 4 h after FSH treatment of primary Sertoli cells. Interestingly, induced levels of ICER protein persist for a considerably longer time. Induction of the repressor ICER accompanies early down-regulation of the FSH receptor transcript, which leads to long-term desensitization. Here we show that ICER represses FSH receptor expression by binding to a CRE-like sequence in the regulatory region of the gene. Our results confirm the crucial role played by CREM in hormonal control and suggest its role in the long-term desensitization phenomenon of peptide membrane receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH) is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs) have been reported within FSH receptor (FSHR) gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive) and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non- obstructive or normal men (p=0.001). Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04). Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Poor ovarian response phenomenon has been observed in some of the in vitro fertilization-embryo transfer patients. Some investigations found that follicle stimulating hormone receptor (FSHR) gene plays a role in the process, but no direct evidence shows the correlation between genotypes of FSHR and ovarian response. Objective: Exploring the molecular mechanism behind the mutation of FSHR promoter association with ovarian granulosa cells and poor ovarian response. Materials and Methods: This cross sectional study was performed using 158 women undergoing the controlled short program ovarian stimulation for IVF treatment. The 263 bp DNA fragments before the follicle stimulating hormone (FSH) receptor 5' initiation site were sequenced in the patients under IVF cycle, 70 of which had poor ovarian response and 88 showed normal ovarian responses. Results: With a mutation rate of 40%, 63 in 158 cases showed a 29th site G→A point mutation; among the mutated cases, the mutation rate of the poor ovarian responders was significantly higher than the normal group (60% versus 23.9%; χ2=21.450, p<0.001). Besides, the variability was also obvious in antral follicle count, and ovum pick-ups. The estradiol peak values and the number of mature eggs between the two groups had significant difference. However, there was no obvious variability (t=0.457, p=0.324) in the basic FSH values between the two groups (normal group, 7.2±2.3 U/L; mutation group, 7.1±2.0 U/L). Conclusion: The activity of FSHR promoter is significantly affected by the 29th site G→A mutation that will weaken promoter activity and result in poor response to FSH.