967 resultados para FLOOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and hypothesis: The aim of this study was to validate a self-administered version of the already validated interviewer-administered Australian pelvic floor questionnaire. Methods: The questionnaire was completed by 163 women attending an urogynecological clinic. Face and convergent validity was assessed. Reliability testing and comparison with the interviewer-administered version was performed in a subset of 105 patients. Responsiveness was evaluated in a subset of 73 women. Results: Missing data did not exceed 4% for any question. Cronbach’s alpha coefficients were acceptable in all domains. Kappa coefficients for the test–retest analyses varied from 0.64–1.0. Prolapse symptoms correlated significantly with the pelvic organ prolapse quantification. Urodynamics confirmed the reported symptom stress incontinence in 70%. The self and interviewer administered questionnaires demonstrated equivalence. Effect sizes ranged from 0.6 to 1.4. Conclusions: This self-administered pelvic floor questionnaire assessed pelvic floor function in a reproducible and valid fashion and due to its responsiveness, can be used for routine clinical assessment and outcome research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich components have emerged as light weight, efficient, economical, recyclable and reusable building systems which provide an alternative to both stiffened steel and reinforced concrete. These components are made of composite materials in which two metal face plates or Glassfibre Reinforced Cement (GRC) layers are bonded and form a sandwich with light weight compact polyurethane (PU) elastomer core. Existing examples of product applications are light weight sandwich panels for walls and roofs, Sandwich Plate System (SPS) for stadia, arena terraces, naval construction and bridges and Domeshell structures for dome type structures. Limited research has been conducted to investigate performance characteristics and applicability of sandwich or hybrid materials as structural flooring systems. Performance characteristics of Hybrid Floor Plate Systems comprising GRC, PU and Steel have not been adequately investigated and quantified. Therefore there is very little knowledge and design guidance for their application in commercial and residential buildings. This research investigates performance characteristics steel, PU and GRC in Hybrid Floor Plate Systems (HFPS) and develops a new floor system with appropriate design guide lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the vibration characteristics of a concrete-steel composite multi-panel floor structure; the use of these structures is becoming more common. These structures have many desirable properties but are prone to excessive and complex vibration, which is not currently well understood. Existing design codes and practice guides provide generic advice or simple techniques that cannot address the complex vibration in these types of low-frequency structures. The results of this study show the potential for an adverse dynamic response from higher and multi-modal excitation influenced by human-induced pattern loading, structural geometry, and activity frequency. Higher harmonics of the load frequency are able to excite higher modes in the composite floor structure in addition to its fundamental mode. The analytical techniques used in this paper can supplement the current limited code and practice guide provisions for mitigating the impact of human-induced vibrations in these floor structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently developed cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their light weight and cost-effectiveness. Another beneficial characteristic is that they allow torsionally rigid rectangular flanges to be combined with economical fabrication processes. Currently, there is significant interest in the use of LSB sections as flexural members in floor joist systems. When used as floor joists, these sections require openings in the web to provide access for inspection and other services. At present, however, there is no design method available that provides accurate predictions of the moment capacities of LSBs with web openings. This paper presents the results of an investigation of the buckling and ultimate strength behaviour of LSB flexural members with web openings. A detailed fine element analysis (FEA)-based parametric study was conducted with the aim of developing appropriate design rules and making recommendations for the safe design of LSB floor joists. The results include the required moment capacity curves for LSB sections with a range of web opening combinations and spans and the development of appropriate design rules for the prediction of the ultimate moment capacities of LSBs with web openings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is an innovative cold-formed steel hollow flange section. When used as floor joists, the LSB sections require holes in the web to provide access for various services. In this study a detailed investigation was undertaken into the elastic lateral distortional buckling behaviour of LSBs with circular web openings subjected to a uniform moment using finite element analysis. Validated ideal finite element models were used first to study the effect of web holes on their elastic lateral distortional buckling behaviour. An equivalent web thickness method was then proposed using four different equations for the elastic buckling analyses of LSBs with web holes. It was found that two of them could be successfully used with approximate numerical models based on solid web elements with an equivalent reduced thickness to predict the elastic lateral distortional buckling moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the research carried out towards the development of a hybrid-composite floor plate systems (HCFPS) using polyurethane (PU), glass-fibre reinforced cement (GRC) and thin perforated steel laminate. HCFPS is configured in such a way where positive inherent properties of individual component materials are combined to offset any weakness and achieve the optimum performance. Finite Element modeling of HCFPS with ABAQUS 6.9-1, comparative studies of HCFPS with the steel deck composite system and experimental investigations which will be carried out are briefly described in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New materials technology has provided the potential for the development of an innovative Hybrid Composite Floor Plate System (HCFPS) with many desirable properties, such as light weight, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions. HCFPS is configured such that the positive inherent properties of individual component materials are combined to offset any weakness and achieve optimum performance. Research has been carried out using extensive Finite Element (FE) computer simulations supported by experimental testing. Both the strength and serviceability requirements have been established for this lightweight floor plate system. This paper presents some of the research towards the development of HCFPS along with a parametric study to select suitable span lengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most commonly, residents are always arguing about the satisfaction of sustainability and quality of their high rise residential property. This paper aim is to maintain the best quality satisfaction of the floor materials by introducing the whole life cycle costing approach to the property manager of the public housing in Johor. This paper looks into the current situation of floor material of two public housings in Johor, Malaysia and testing the whole life cycle costing approach towards them. The cost figures may be implemented to justify higher investments, for examples, in the quality or flexibility of building solutions through a long-term cost reduction. The calculation and the literature review are conducted. The questionnaire surveys of two public housings were conducted to make clear the occupants’ evaluation about the actual quality conditions of the floor material in their house. As a result, the quality of floor material based on the whole life cycle costing approach is one of the best among their previous decision making tool that was applied. Practitioners can benefit from this paper as it provides information on calculating the whole life costing and making the decisions for floor material selection for their properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored the dynamic performance of an innovative Hybrid Composite Floor Plate System (HCFPS), composed of Polyurethane (PU) core, outer layers of Glass–fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Experimental testing included heel impact and walking tests for 3200 mm span HCFPS panels. FE models of the HCFPS were developed using the FE program ABAQUS and validated with experimental results. HCFPS is a light-weight high frequency floor system with excellent damping ratio of 5% (bare floor) due to the central PU core. Parametric studies were conducted using the validated FE models to investigate the dynamic response of the HCFPS and to identify characteristics that influence acceleration response under human induced vibration in service. This vibration performance was compared with recommended acceptable perceptibility limits. The findings of this study show that HCFPS can be used in residential and office buildings as a light-weight floor system, which does not exceed the perceptible thresholds due to human induced vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored the flexural performance of an innovative Hybrid Composite Floor Plate System (HCFPS), comprised of Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Bending and cyclic loading tests for the HCFPS panels and a comprehensive material testing program for component materials were carried out. HCFPS test panel exhibited ductile behaviour and flexural failure with a deflection ductility index of 4. FE models of HCFPS were developed using the program ABAQUS and validated with experimental results. The governing criteria of stiffness and flexural performance of HCFPS can be improved by enhancing the properties of component materials. HCFPS is 50-70% lighter in weight when compared to conventional floor systems. This study shows that HCFPS can be used for floor structures in commercial and residential buildings as an alternative to conventional steel concrete composite systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the modern built environment, building construction and demolition consume a large amount of energy and emits greenhouse gasses due to widely used conventional construction materials such as reinforced and composite concrete. These materials consume high amount of natural resources and possess high embodied energy. More energy is required to recycle or reuse such materials at the cessation of use. Therefore, it is very important to use recyclable or reusable new materials in building construction in order to conserve natural resources and reduce the energy and emissions associated with conventional materials. Advancements in materials technology have resulted in the introduction of new composite and hybrid materials in infrastructure construction as alternatives to the conventional materials. This research project has developed a lightweight and prefabricatable Hybrid Composite Floor Plate System (HCFPS) as an alternative to conventional floor system, with desirable properties, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fiber Reinforced Cement (GRC) and steel laminates at tensile regions. This research work explored the structural adequacy and performance characteristics of hybridised GRC, PU and steel laminate for the development of HCFPS. Performance characteristics of HCFPS were investigated using Finite Element (FE) method simulations supported by experimental testing. Parametric studies were conducted to develop the HCFPS to satisfy static performance using sectional configurations, spans, loading and material properties as the parameters. Dynamic response of HCFPS floors was investigated by conducting parametric studies using material properties, walking frequency and damping as the parameters. Research findings show that HCFPS can be used in office and residential buildings to provide acceptable static and dynamic performance. Design guidelines were developed for this new floor system. HCFPS is easy to construct and economical compared to conventional floor systems as it is lightweight and prefabricatable floor system. This floor system can also be demounted and reused or recycled at the cessation of use due to its component materials.