499 resultados para FE3
Resumo:
The mineral kulanite BaFe2Al2(PO4)3(OH)3, a barium iron aluminum phosphate, has been studied by using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscopy with EDX shows the mineral is homogenous with no other phases present. The Raman spectrum is dominated by an intense band at 1022 cm1 assigned to the PO43-1 symmetric stretching mode. Low intensity Raman bands at 1076, 1110, 1146, 1182 cm1 are attributed to the PO43-3 antisymmetric stretching vibrations. The infrared spectrum shows a complex spectral profile with overlapping bands. Multiple phosphate bending vibrations supports the concept of a reduction in symmetry of the phosphate anion. Raman spectrum at 3211, 3513 and 3533 cm1 are assigned to the stretching vibrations of the OH units. Vibrational spectroscopy enables aspects on the molecular structure of kulanite to be assessed.
Resumo:
The mineral natrodufrnite a secondary pegmatite phosphate mineral from Minas Gerais, Brazil, has been studied by a combination of scanning electron microscopy and vibrational spectroscopic techniques. Electron probe analysis shows the formula of the studied mineral as (Na0.88Ca0.12)1.00(Mn0.11Mg0.08Ca0.04Zr0.01Cu0.01)0.97(Al0.02)4.91(PO4)3.96(OH6.15F0.07)6.222.05(H2O). Raman spectroscopy identifies an intense peak at 1003 cm1 assigned to the 1 symmetric stretching mode. Raman bands are observed at 1059 and 1118 cm1 and are attributed to the 3 antisymmetric stretching vibrations. A comparison is made with the spectral data of other hydrate hydroxy phosphate minerals including cyrilovite and wardite. Raman bands at 560, 582, 619 and 668 cm1 are assigned to the 4 bending modes and Raman bands at 425, 444, 477 and 507 cm1 are due to the 2 bending modes. Raman bands in the 26003800 cm1 spectral range are attributed to water and OH stretching vibrations. Vibrational spectroscopy enables aspects of the molecular structure of natrodufrnite to be assessed.
Resumo:
Natural single-crystal specimens of barbosalite from Brazil, with general formula Fe2+Fe3+ 2 (PO4)2(OH)2 were investigated by Raman and infrared spectroscopy. The mineral occurs as secondary products in granitic pegmatites. The Raman spectrum of barbosalite is characterized by bands at 1020, 1033 and 1044 cm1 cm1, assigned to 1 symmetric stretching mode of the HOPO3- 3 and PO3- 4 units. Raman bands at around 1067, 1083 and 1138 cm1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 575, 589 and 606 cm1 are assigned to the 4 out of plane bending modes of the PO4 and H2PO4 units. Raman bands at 439, 461, 475 and 503 cm1 are attributed to the 2 PO4 and H2PO4 bending modes. Strong Raman bands observed at 312, 346 cm1 with shoulder bands at 361, 381 and 398 cm1 are assigned to FeO stretching vibrations. No bands which are attributable to water vibrations were found. Vibrational spectroscopy enables aspects of the molecular structure of barbosalite to be assessed.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of kapundaite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Kapundaite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of kapundaite with wardite. The Raman spectrum of kapundaite in the 8001400 cm1 spectral range shows two intense bands at 1089 and 1114 cm1 assigned to the 1PO43- symmetric stretching vibrations. The observation of two bands provides evidence for the non-equivalence of the phosphate units in the kapundaite structure. The infrared spectrum of kapundaite in the 5001300 cm1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 966, 1003 and 1036 cm1 and are attributed to the 1PO43- symmetric stretching mode and 3PO43- antisymmetric stretching mode. Raman bands in the 4 out of plane bending modes of the PO43- unit support the concept of non-equivalent phosphate units in the kapundaite structure. In the 26003800 cm1 spectral range, Raman bands for kapundaite are found at 2905, 3151, 3311, 3449 and 3530 cm1. These bands are broad and are assigned to OH stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm1 and are attributed to water. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of kapundaite to be ascertained and compared with that of other phosphate minerals.
Resumo:
"The authors agree with the statements made by Mills and Christy on the study of kapundaite [1]. These authors are correct and have removed any confusion about the origin of the sample kapundaite. The authors (Frost et al.) confirm the sample of kapundaite studied in this work is from the Toms quarry, Australia and can be considered a type material. The authors do not accept the statements by Mills and Christy on type minerals. The sample of kapundaite from the Australian source is from the collection of the Geology Department of the Federal University of Ouro Preto, Minas Gerais, Brazil with sample code SAC-111. At least if our mineral sample is not a co-type mineral, our sample is from the same origin as the type mineral. Samples..."--publisher website.
Resumo:
Samples of marble from Chillagoe, North Queensland have been analyzed using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. Chemical analyses provide evidence for the presence of minerals other than limestone and calcite in the marble, including silicate minerals. Some of these analyses correspond to silicate minerals. The Raman spectra of these crystals were obtained and the Raman spectrum corresponds to that of allanite from the Arizona State University data base (RRUFF) data base. The combination of SEM with EDS and Raman spectroscopy enables the characterization of the mineral allanite in the Chillagoe marble.
A SEM, EDS and vibrational spectroscopic study of the tellurite mineral: Sonoraite Fe3+Te4+O3(OH)H2O
Resumo:
We have undertaken a study of the tellurite mineral sonorite using electron microscopy with EDX combined with vibrational spectroscopy. Chemical analysis shows a homogeneous composition, with predominance of Te, Fe, Ce and In with minor amounts of S. Raman spectroscopy has been used to study the mineral sonoraite an examples of group A(XO3), with hydroxyl and water units in the mineral structure. The free tellurite ion has C3v symmetry and four modes, 2A1 and 2E. An intense Raman band at 734 cm1 is assigned to the 1 (TeO3)2 symmetric stretching mode. A band at 636 cm1 is assigned to the 3 (TeO3)2 antisymmetric stretching mode. Bands at 350 and 373 cm1 and the two bands at 425 and 438 cm1 are assigned to the (TeO3)22 (A1) bending mode and (TeO3)24 (E) bending modes. The sharp band at 3283 cm1 assigned to the OH stretching vibration of the OH units is superimposed upon a broader spectral profile with Raman bands at 3215, 3302, 3349 and 3415 cm1 are attributed to water stretching bands. The techniques of Raman and infrared spectroscopy are excellent for the study of tellurite minerals.
Resumo:
The intensity of the EPR signal with g = 5.985 arising from a ferric ion oxygen vacancy defect pair (Fe3+ VO) in PbTiO3, varies with the extent of PbO nonstoichiometry at constant Fe3+ content due to an increased oxygen vacancy concentration. In PZT solid solutions, the signal intensity decreases with an increase in Zr. A lower intensity is also noticed for Fe3+ VO signals in PbZrO3. This behaviour is explained on the basis of PbO nonstoichiometry arising from independent Pb- and O-vacancies as well as the randomly distributed crystallographic shear (CS) plane defects. The contribution to PbO nonstoichiometry from CS planes is larger in high zirconium compositions of PZT.
Resumo:
Electron spin resonance (ESR) of d5 ions (Fe3+ and Mn2+) has been investigated in PbO---PbF2 and PbO---PbCl2 glasses in wide ranges of composition. ESR spectra of d5 ions in these glasses exhibit significant differences which we have attributed to at least three important causes: (i) The ionic potentials of Fe3+ and Mn2+ are different. Hence Fe3+ ions tend to acquire their own environment while Mn2+ ions take up substitutional (Pb2+ ion) positions. (ii) The sizes and nephelauxetic behaviours of O2- and F- ions are similar. Thus even when there is a mixed anionic coordination, the environment of Mn2+ ions is highly symmetrical in oxyfluoride glasses. The Mn2+ spectra in oxychloride glasses are considerably different. (iii) Increase in halide ion concentration increases the ionicity of lead-ligand bonding and favours a more symmetrical environment around dopant ions in halide-rich glasses. The features in ESR spectra have been interpreted in the light of known behaviour of d5 ions in glasses and also in the context of known structural features of PbO---PbX2 glasses. Dopant ions appear to cluster at high concentrations although isolated low-symmetry sites are still observed. Effects of crystallization and annealing upon ESR spectra have also been investigated.
Resumo:
The signatures of the coexistence of para and ferromagnetic phases for the Fe3+ charge state of iron have been identified in the low temperature electron spin resonance (ESR) spectra in undoped CdZnTe (Zn similar to 4%) crystals and independently verified by superconducting quantum interference device (SQUID) and AC susceptibility measurements. In the paramagnetic phase the inverse of AC susceptibility follows the Curie-Weiss law. In the ferromagnetic phase the thermal evolution of magnetization follows the well-known Bloch T-3/2 law. This is further supported by the appearance of hysteresis in the SQUID measurements at 2 K below T-c which is expected to lie in between 2 and 2.5 K. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Reduction behaviour of Fe3+/Al2O3 obtained by the decomposition of the oxalate precursor has been investigated by employing X-ray diffraction (XRD), Mssbauer spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. Calcination of Fe3+/Al2O3 at or below 1070 K yields mainly a poorly ordered, fine particulate form of ?-Al2xFexO3. Calcination at or above 1220 K yields ?-Al2xFexO3. Reduction of Fe3+/Al2O3 samples calcined at or below 1070 K gives the FeAl2O4 spinel on reduction at 870 K; samples calcined at or above 1220 K give Al2-xFexO3 with a very small proportion of metallic iron. Fe3+/Al2O3 samples calcined at 1220 K or above yield metallic iron and a very small proportion of the spinel on reduction below 1270 K. In the samples reduced at or above 1270 K, the main product is metallic iron in both ferromagnetic and superparamagnetic forms. The oxalate precursor route yields more metallic iron than the solgel route.
Resumo:
A systematic study on the variation of Mssbauer hyperfine parameters with grain size in nanocrystalline zinc ferrite is lacking. In the present study, nanocrystalline ZnFe2O4 ferrites with different grain sizes were prepared by ball-milling technique and characterised by X-ray, EDAX, magnetisation and Mssbauer studies. The grain size decreases with increasing milling time and lattice parameter is found to be slightly higher than the bulk value. Magnetisation at room temperature (RT) and at 77 K could not be saturated with a magnetic field of 7 kOe and the observed magnetisation at these temperatures can be explained on the basis of deviation of cation distribution from normal spinel structure. The Mssbauer spectra were recorded at different temperatures between RT and 16 K. The values of quadrupole splitting at RT are higher for the milled samples indicating the disordering of ZnFe2O4 on milling. The strength of the magnetic hyperfine interactions increases with grain size reduction and this can be explained on the basis of the distribution of Fe3+ ions at both tetrahedral and octahedral sites.
Resumo:
MgO:Fe3+ (0.1-5 mol%) nanoparticles (NPs) were synthesized via eco-friendly, inexpensive and simple low temperature solution combustion route using Aloe vera gel as fuel. The final products were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis revealed the formation of cubic system. The influence of Fe3+ ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of MgO:Fe3+ NPs were investigated. The yellow emission with CIE chromaticity coordinates (0.44, 0.52) and average correlated color temperature value was found to be 3540 K which corresponds to warm light of NPs. The control of Fe3+. on MgO matrix influences the photocatalytic decolorization of methylene blue (MB) under UV light. The enhanced photocatalytic activity of MgO:Fe3+ (4 mol%) was attributed to dopant concentration, effective crystallite size, textural properties, decreased band gap and capability for reducing the electron hole pair recombination. Further, the trends of inhibitory effect in the presence of different radical scavengers were explored. These findings open up new avenues for the exploration of Fe-doped MgO in eco-friendly water applications and in the process of display devices. (C) 2015 Elsevier B.V. All rights reserved.