962 resultados para FACTOR-XII GENE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To analyze the vascularization of the endometrium via hysteroscopy and to assess its correlation with angiogenic factor gene expression and embryo implantation rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To examine whether the G-to-A polymorphism at position -308 in the promoter of the tumour necrosis factor-alpha (TNFalpha) gene influences the therapeutic response to TNFalpha-blockers in patients with rheumatoid arthritis (RA), psoriatic arthritis (PsA) and ankylosing spondylitis (AS). METHODS: A total of 54 patients with RA, 10 with PsA and 22 with AS were genotyped by polymerase chain reaction for the -308 TNFalpha promoter polymorphism. They were treated with infliximab (n = 63), adalimumab (n = 10) or etanercept (n = 13). Clinical response was assessed after 24 weeks by the Disease Activity Score in 28 joints (DAS28) for RA and PsA, and the Bath Ankylosing Spondylitis Activity Index (BASDAI) for AS patients. RESULTS: All patients with the A/A genotype (n = 3, all RA) and two patients with the A/G genotype (AS) failed to respond to anti-TNF treatment. Irrespective of the underlying disease, moderate response (n = 44) was predominantly associated with the A/G genotype (A/G 18/22, G/G 4/22), whereas good response (n = 59) was exclusively seen in patients with the G/G genotype. The average improvement in the DAS28 score was 0.83 in the A/A, 1.50 in the A/G and 2.64 in the G/G group of RA and PsA patients (P < 0.0001). The BASDAI score in AS improved on average by 1.21 in the A/G and by 3.30 in the G/G group (P < 0.005). CONCLUSIONS: The data suggest that humans with a TNFalpha -308 G/G genotype are better responders to anti-TNFalpha treatment than those with A/A or A/G genotypes independent of the treated rheumatic disease (RA, PsA or AS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical localization of the epidermal growth factor receptor (EGFR) gene was performed on donkey chromosomes. Bacterial artificial chromosome DNA containing the equine EGFR gene was used to map this gene by fluorescent in situ hybridization on donkey metaphase chromosomes. The gene was mapped on donkey 1q21.1 region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse models show that congenital neural tube defects (NTDs) can occur as a result of mutations in the platelet-derived growth factor receptor-α gene (PDGFRα). Mice heterozygous for the PDGFRα-mutation Patch, and at the same time homozygous for the undulated mutation in the Pax1 gene, exhibit a high incidence of lumbar spina bifida occulta, suggesting a functional relation between PDGFRα and Pax1. Using the human PDGFRα promoter linked to a luciferase reporter, we show in the present paper that Pax1 acts as a transcriptional activator of the PDGFRα gene in differentiated Tera-2 human embryonal carcinoma cells. Two mutant Pax1 proteins carrying either the undulated-mutation or the Gln → His mutation previously identified by us in the PAX1 gene of a patient with spina bifida, were not or less effective, respectively. Surprisingly, Pax1 mutant proteins appear to have opposing transcriptional activities in undifferentiated Tera-2 cells as well as in the U-2 OS osteosarcoma cell line. In these cells, the mutant Pax1 proteins enhance PDGFRα-promoter activity whereas the wild-type protein does not. The apparent up-regulation of PDGFRα expression in these cells clearly demonstrates a gain-of-function phenomenon associated with mutations in Pax genes. The altered transcriptional activation properties correlate with altered protein–DNA interaction in band-shift assays. Our data provide additional evidence that mutations in Pax1 can act as a risk factor for NTDs and suggest that the PDGFRα gene is a direct target of Pax1. In addition, the results support the hypothesis that deregulated PDGFRα expression may be causally related to NTDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The (X;1)(p11;q21) translocation is a recurrent chromosomal abnormality in a subset of human papillary renal cell carcinomas, and is sometimes the sole cytogenetic abnormality present. Via positional cloning, we were able to identify the genes involved. The translocation results in a fusion of the transcription factor TFE3 gene on the X chromosome to a novel gene, designated PRCC, on chromosome 1. Through this fusion, reciprocal translocation products are formed, which are both expressed in papillary renal cell carcinomas. PRCC is ubiquitously expressed in normal adult and fetal tissues and encodes a putative protein of 491 aa with a relatively high content of prolines. No relevant homologies with known sequences at either the DNA or the protein level were found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoiesis depends on a pool of quiescent hematopoietic stem/progenitor cells. When exposed to specific cytokines, a portion of these cells enters the cell cycle to generate an amplified progeny. Myeloblastin (MBN) initially was described as involved in proliferation of human leukemia cells. The granulocyte colony-stimulating factor (G-CSF), which stimulates the proliferation of granulocytic precursors, up-regulates MBN expression. Here we show that constitutive overexpression of MBN confers factor-independent growth to murine bone marrow-derived Ba/F3/G-CSFR cells. Our results point to MBN as a G-CSF responsive gene critical to factor-independent growth and indicate that expression of the G-CSF receptor is a prerequisite to this process. A 91-bp MBN promoter region containing PU.1, C/EBP, and c-Myb binding sites is responsive to G-CSF treatment. Although PU.1, C/EBP, and c-Myb transcription factors all were critical for expression of MBN, its up-regulation by G-CSF was associated mainly with PU.1. These findings suggest that MBN is an important target of PU.1 and a key protease for factor-independent growth of hematopoietic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functional role of the interaction between c-Jun and simian virus 40 promoter factor 1 (Sp1) in epidermal growth factor (EGF)-induced expression of 12(S)-lipoxygenase gene in human epidermoid carcinoma A431 cells was studied. Coimmunoprecipitation experiments indicated that EGF stimulated interaction between c-Jun and Sp1 in a time-dependent manner. Overexpression of Ha-ras and c-Jun also enhanced the amount of c-Jun binding to Sp1. In addition, the c-Jun dominant negative mutant TAM-67 not only inhibited the coimmunoprecipitated c-Jun binding to Sp1 in a dose-dependent manner in cells overexpressing c-Jun but also reduced promoter activity of the 12(S)-lipoxygenase gene induced by c-Jun overexpression. Treatment of cells with EGF increased the interaction between the Sp1 oligonucleotide and nuclear c-Jun/Sp1 in a time-dependent manner. Furthermore, EGF activated the chimeric promoter consisting of 10 tandem GAL4-binding sites, which replaced the three Sp1-binding sites in the 12(S)lipoxygenase promoter only when coexpressed with GAL4-c-Jun () fusion proteins. These results indicate that the direct interaction between c-Jun and Sp1 induced by EGF cooperatively activated expression of the 12(S)-lipoxygenase gene, and that Sp1 may serve at least in part as a carrier bringing c-Jun to the promoter, thus transactivating the transcriptional activity of 12(S)-lipoxygenase gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) mediates angiogenic activity in a variety of estrogen target tissues. To determine whether estrogen has a direct transcriptional effect on VEGF gene expression, we developed a model system by transiently transfecting human VEGF promoter-luciferase reporter constructs into primary human endometrial cells and into Ishikawa cells, derived from a well-differentiated human endometrial adenocarcinoma. In primary endometrial epithelial cells, treatment with 17β-estradiol (E2) resulted in a 3.8-fold increase in luciferase activity, whereas a 3.2-fold induction was demonstrated for stromal cells. Our Ishikawa cells had less than 100 functional estrogen receptors (ER)/cell and were therefore cotransfected with expression vectors encoding either the α- or the β-form of the human ER. In cells cotransfected with ERα, E2 induced 3.2-fold induction in VEGF-promoter luciferase activity. A 2.3-fold increase was observed in cells cotransfected with ERβ. Through specific deletions, the E2 response was restricted to a single 385-bp PvuII-SstI fragment in the 5′ flanking DNA. Cotransfection of this upstream region with a DNA binding domain ER mutant, or site-directed mutagenesis of a variant ERE within this fragment, resulted in the loss of the E2 response. Electromobility shift assays demonstrated that this same ERE sequence specifically binds estradiol-ER complexes. These studies demonstrate that E2-regulated VEGF gene transcription requires a variant ERE located 1.5 kb upstream from the transcriptional start site. Site-directed mutagenesis of this ERE abrogated E2-induced VEGF gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycosylation inhibiting factor (GIF) and macrophage migration inhibitory factor (MIF) share an identical structure gene. Here we unravel two steps of posttranslational modifications in GIF/MIF molecules in human suppressor T (Ts) cell hybridomas. Peptide mapping and MS analysis of the affinity-purified GIF from the Ts cells revealed that one modification is cysteinylation at Cys-60, and the other is phosphorylation at Ser-91. Cysteinylated GIF, but not the wild-type GIF/MIF, possessed immunosuppressive effects on the in vitro IgE antibody response and had high affinity for GIF receptors on the T helper hybridoma cells. In vitro treatment of wild-type recombinant human GIF/MIF with cystine resulted in preferential cysteinylation of Cys-60 in the molecules. The cysteinylated recombinant human GIF and the Ts hybridoma-derived cysteinylated GIF were comparable both in the affinity for the receptors and in the immunosuppressive activity. Polyclonal antibodies specific for a stretch of the amino acid sequence in α2-helix of GIF bound bioactive cysteinylated GIF but failed to bind wild-type GIF/MIF. These results strongly suggest that cysteinylation of Cys-60 and consequent conformational changes in the GIF/MIF molecules are responsible for the generation of GIF bioactivity.