888 resultados para Extinction coefficient
Resumo:
TiO2 films are extensively used in various applications including optical multi-layers, sensors, photo catalysis, environmental purification, and solar cells etc. These are prepared by both vacuum and non-vacuum methods. In this paper, we present the results on TiO2 thin films prepared by a sol-gel spin coating process in non-aqueous solvent. Titanium isopropoxide is used as TiO2 precursor. The films were annealed at different temperatures up to 3000 C for 5 hours in air. The influence of the various deposition parameters like spinning speed, spinning time and annealing temperature on the thickness of the TiO2 films has been studied. The variation of film thickness with time in ambient atmosphere was also studied. The optical, structural and morphological characteristics were investigated by optical transmittance-reflectance measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The refractive index and extinction coefficient of the films were determined by envelope technique and spectroscopic ellipsometry. TiO2 films exhibited high transparency (92%) in the visible region with a refractive index of 2.04 at 650 nm. The extinction coefficient was found to be negligibly small. The X-ray diffraction analysis showed that the TiO2 film deposited on glass substrate changes from amorphous to crystalline (anatase) phase with annealing temperature above 2500 C. SEM results show that the deposited films are uniform and crack free.
Resumo:
An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Tetrahydroquinoxaline based squaraine dyes synthesized by the condensation reaction between squaric acid and different tetrahydroquinoxaline derivatives are described. The squaraines gave a strong intense peak at 700 nm and were found to exhibit good molar extinction coefficient (>105 M−1 cm−1). Metal binding studies were carried out with different metal ions and it was found that it was selective in the case of copper metal. Using Job's plot it was ascertained that the squaraines bind to the copper metal in the ratio of 2:1.
Resumo:
Poly(linalool) thin films were fabricated using RF plasma polymerisation. All films were found to be smooth, defect-free surfaces with average roughness of 0.44 nm. The FTIR analysis of the polymer showed a notable reduction in –OH moiety and complete dissociation of C=C unsaturation compared to the monomer, and presence of a ketone band absent from the spectrum of the monomer. Poly(linalool) were characterised by chain branching and a large quantity of short polymer chains. Films were optically transparent, with refractive index and extinction coefficient of 1.55 and 0.001 (at 500 nm) respectively, indicating a potential application as an encapsulating (protective) coating for circuit boards. The optical band gap was calculated to be 2.82 eV, which is in the semiconducting energy gap region.
Resumo:
Recent advancements in the area of organic polymer applications demand novel and advanced materials with desirable surface, optical and electrical properties to employ in emerging technologies. This study examines the fabrication and characterization of polymer thin films from non-synthetic Terpinen-4-ol monomer using radio frequency plasma polymerization. The optical properties, thickness and roughness of the thin films were studied in the wavelength range 200–1000 nm using ellipsometry. The polymer thin films of thickness from 100 nm to 1000 nm were fabricated and the films exhibited smooth and defect-free surfaces. At 500 nm wavelength, the refractive index and extinction coefficient were found to be 1.55 and 0.0007 respectively. The energy gap was estimated to be 2.67 eV, the value falling into the semiconducting Eg region. The obtained optical and surface properties of Terpinen-4-ol based films substantiate their candidacy as a promising low-cost material with potential applications in electronics, optics, and biomedical industries.
Resumo:
Presence of the dw3 sorghum dwarfing gene had negative effects on grain yield in some genetic backgrounds and environments. In a previous study we showed that this was due to a significant reduction in shoot biomass (mainly via reduced stem mass), which in turn negatively affected grain size. The current study examines whether shoot biomass was reduced via effects of dw3 on traits associated with resource capture, such as leaf area index (LAI), light interception (LI), and canopy extinction coefficient (k) or with resource use efficiency, such as radiation use efficiency (RUE). Three pairs of near-isogenic sorghum lines differing only in the presence or absence of the dwarfing allele dw3 (3-dwarfs vs 2-dwarfs) were grown in large field plots. Biomass accumulation and LI were measured for individual canopy layers to examine canopy characteristics of tall and short types. Similar to the previously reported effects on grain yield, the effects of dw3 on RUE, LI and k varied among genetic backgrounds and environments. Interactions between dw3 and genetic background, but also interactions with environment are likely to have modulated the extent to which RUE, LI, or k contributed to biomass differences between tall and short sorghum. © 2013 .
Resumo:
The information on altitude distribution of aerosols in the atmosphere is essential in assessing the impact of aerosol warming on thermal structure and stability of the atmosphere.In addition, aerosol altitude distribution is needed to address complex problems such as the radiative interaction of aerosols in the presence of clouds. With this objective,an extensive, multi-institutional and multi-platform field experiment (ICARB-Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP) over continental India and adjoining oceans during March to May 2006. Here, we present airborne LIDAR measurements carried out over the east Coast of the India during the ICARB field campaign. An increase in aerosol extinction (scattering + absorption) was observed from the surface upwards with a maximum around 2 to 4 km. Aerosol extinction at higher atmospheric layers (>2 km) was two to three times larger compared to that of the surface. A large fraction (75-85%) of aerosol column optical depth was contributed by aerosols located above 1 km. The aerosol layer heights (defined in this paper as the height at which the gradient in extinction coefficient changes sign) showed a gradual decrease with an increase in the offshore distance. A large fraction (60-75%) of aerosol was found located above clouds indicating enhanced aerosol absorption above clouds. Our study implies that a detailed statistical evaluation of the temporal frequency and spatial extent of elevated aerosol layers is necessary to assess their significance to the climate. This is feasible using data from space-borne lidars such as CALIPSO,which fly in formation with other satellites like MODIS AQUA and MISR, as part of the A-Train constellation.
Resumo:
Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.
Resumo:
Bismuth vanadate (Bi2VO5.5, BVO) thin films have been deposited by a pulsed laser ablation technique on platinized silicon substrates. The surface morphology of the BVO thin films has been studied by atomic force microscopy (AFM). The optical properties of the BVO thin films were investigated using spectroscopic ellipsometric measurements in the 300–820 nm wavelength range. The refractive index (n), extinction coefficient (k) and thickness of the BVO thin films have been obtained by fitting the ellipsometric experimental data in a four-phase model (air/BVOrough/BVO/Pt). The values of the optical constants n and k that were determined through multilayer analysis at 600 nm were 2.31 and 0.056, respectively. For fitting the ellipsometric data and to interpret the optical constants, the unknown dielectric function of the BVO films was constructed using a Lorentz model. The roughness of the films was modeled in the Brugmann effective medium approximation and the results were compared with the AFM observations.
Resumo:
The optical properties of Bi(2)V(1-x)MnxO(5.5-x) (x=0.05, 0.1, 0.15 and 0.2 at.%) thin films fabricated by pulsed laser deposition on platinized Silicon Substrates were Studied in UV-visible spectral region (1.51-4.17 CV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Psi and Delta) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn Content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We have measured the frequency-dependent real index of refraction and extinction coefficient (and hence the complex dielectric function) of a free-standing double-walled carbon nanotube film of thickness 200 nm by using terahertz time domain spectroscopy in the frequency range 0.1 to 2.5 THz. The real index of refraction and extinction coefficient have very high values of approximately 52 and 35, respectively, at 0.1 THz, which decrease at higher frequencies. Two low-frequency phonon modes of the carbon nanotubes at 0.45 and 0.75 THz were clearly observed for the first time in the real and imaginary parts of the complex dielectric function along with a broad resonance centred at around 1.45 THz, the latter being similar to that in single-walled carbon nanotubes assigned to electronic excitations. Our experiments bring out a possible application of double-walled carbon nanotube films as a neutral density filter in the THz range.
Resumo:
This paper discusses the optical properties of single-layer TiO2 films deposited using an activated reactive evaporation process. The combined effects of substrate temperature (in the range 70–200 °C) and discharge currents (0–400 mA) on refractive index, extinction coefficient and packing density of these films are investigated. Significant changes in refractive index values have been observed with increases in substrate temperature and discharge current. The change in refractive index is correlated with the variation in packing density. The variation in extinction coefficient was reduced using the combined effects of substrate temperature and discharge currents. A comparison with films deposited in neutral oxygen has also been made.
Resumo:
This paper deals with the reactive sputtering of titanium in an argon and oxygen mixture. The variation in cathode potential as a function of oxygen partial pressure has been explained in terms of cathode poisoning effects. The titania films deposited during this process have been studied for their structural and optical characteristics. The effect of substrate temperature (from 25 to 400 °C) and annealing (from 250 to 700 °C) on the packing density, refractive index, extinction coefficient, and crystallinity has been investigated. The refractive index varied from 2.24 to 2.46 and extinction coefficient from 2.6 × 10-3 to 10.4× 10-3 at 500 nm as the substrate temperature increased from 25 to 400 °C. The refractive index increased from 2.19 to 2.35 and extinction coefficient changed from 3.2× 10-3 to 11.6 × 10-3 at 500 nm as the annealing temperature was increased from 250 to 700 °C. Anatase and rutile phases have been observed in the films deposited at 400 °C substrate temperature and annealed at 300 °C. The changes in the optical constants at higher substrate temperature have been attributed to an increase in packing density, oxygen content, and crystallinity of the films.
Resumo:
Studies of ZrO2 films prepared by d.c. reactive magnetron sputtering are described. The effects of substrate temperature on the packing density, refractive index, extinction coefficient and crystallinity phase have been investigated in the temperature range 25–450 °C. The refractive index varied from 1.84 to 1.95 and extinction coefficient from 2 × 10−3 to 9.6 × 10−3. This was explained on the basis of an increase in packing density from 0.686 to 0.813. The change in packing density has been attributed to a decrease in the oxygen condensation at higher temperatures. Annealing results in a decrease in refractive index and increase in extinction coefficient. The films deposited at 150 °C showed a monoclinic phase which transforms to a tetragonal phase at higher substrate temperatures.
Effects of thermal annealing on the properties of zirconia films prepared by ion-assisted deposition
Resumo:
The effect of thermal annealing in the range 300–800 °C on the properties of zirconia films prepared by ion assisted deposition was studied. It was found that at low temperature the cubic phase is formed. This phase is stable up to 700 °C. All the films exhibit a monophasic monoclinic structure at 800 °C. The stress, estimated from X-ray patterns, shows a transition from tensile to compressive with increasing ion fluence. The refractive index and extinction coefficient do not seem to change appreciably up to 700 °C, showing a marked degradation thereafter. Single step annealing to the highest temperature was found to result in better stability than multistep annealing.