998 resultados para Exponential stability


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, a class of periodic Cohen-Grossberg neural networks with discrete and distributed time-varying delays is considered. By an extension of the Lyapunov-Krasovskii functional method, a novel criterion for the existence and uniqueness and global asymptotic stability of positive periodic solution is derived in terms of M-matrix without any restriction on uniform positiveness of the amplification functions. Comparison and illustrative examples are given to illustrate the effectiveness of the obtained results. © 2014 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, a general class of Halanay-type non-autonomous functional differential inequalities is considered. A new concept of stability, namely global generalized exponential stability, is proposed. We first prove some new generalizations of the Halanay inequality. We then derive explicit criteria for global generalized exponential stability of nonlinear non-autonomous time-delay systems based on our new generalized Halanay inequalities. Numerical examples and simulations are provided to illustrate the effectiveness of the obtained results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is concerned with stochastic stability of a class of nonlinear discrete-time Markovian jump systems with interval time-varying delay and partially unknown transition probabilities. A new weighted summation inequality is first derived. We then employ the newly derived inequality to establish delay-dependent conditions which guarantee the stochastic stability of the system. These conditions are derived in terms of tractable matrix inequalities which can be computationally solved by various convex optimized algorithms. Numerical examples are provided to illustrate the effectiveness of the obtained results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we propose a new approach to analyse the stability of a general family of nonlinear positive discrete time-delay systems. First, we introduce a new class of nonlinear positive discrete time-delay systems, which generalises some existing discrete time-delay systems. Second, through a new technique that relies on the comparison and mathematical induction method, we establish explicit criteria for stability and instability of the systems. Three numerical examples are given to illustrate the feasibility of the obtained results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parametric ship roll resonance is a phenomenon where a ship can rapidly develop high roll motion while sailing in longitudinal waves. This effect can be described mathematically by periodic changes of the parameters of the equations of motion, which lead to a bifurcation. In this paper, the control design of an active u-tank stabilizer is carried out using Lyapunov theory. A nonlinear backstepping controller is developed to provide global exponential stability of roll. An extension of commonly used u-tank models is presented to account for large roll angles, and the control design is tested via simulation on a high-fidelity model of a vessel under parametric roll resonance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the local asymptotic stabilization of a very general class of instable autonomous nonlinear difference equations which are subject to perturbed dynamics which can have a different order than that of the nominal difference equation. In the general case, the controller consists of two combined parts, namely, the feedback nominal controller which stabilizes the nominal (i.e., perturbation-free) difference equation plus an incremental controller which completes the stabilization in the presence of perturbed or unmodeled dynamics in the uncontrolled difference equation. A stabilization variant consists of using a single controller to stabilize both the nominal difference equation and also the perturbed one under a small-type characterization of the perturbed dynamics. The study is based on Banach fixed point principle, and it is also valid with slight modification for the stabilization of unstable oscillatory solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a design methodology to stabilize isolated relative equilibria in a model of all-to-all coupled identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles with fixed relative phases. The stabilizing feedbacks derive from Lyapunov functions that prove exponential stability and suggest almost global convergence properties. The results of the paper provide a low-order parametric family of stabilizable collectives that offer a set of primitives for the design of higher-level tasks at the group level. © 2007 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

由于细胞神经网络的潜在应用前景 ,它现已成为神经网络研究的新热点。首先给出连续型联想细胞神经网络的数学模型 ,得到了连续型细胞神经网络平衡点局部指数稳定的充要条件及平衡点指数吸引域的估计 ,研究表明对平衡点的指数吸引域的估计 ,只要计算平衡点处的导算子矩阵的对数范数即可。该研究对连续型联想细胞神经网络的设计和应用均有重要的作用。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the robust stabilization and Hcontrol problem for a class of linear polytopic systems with continuously distributed delays. The control objective is to design a robust H controller that satisfies some exponential stability constraints on the closed-loop poles. Using improved parameter-dependent Lyapunov Krasovskii functionals, new delay-dependent conditions for the robust H control are established in terms of linear matrix inequalities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper considers the problem of designing an observer-based output feedback controller to exponentially stabilize a class of linear systems with an interval time-varying delay in the state vector. The delay is assumed to vary within an interval with known lower and upper bounds. The time-varying delay is not required to be differentiable, nor should its lower bound be zero. By constructing a set of Lyapunov–Krasovskii functionals and utilizing the Newton–Leibniz formula, a delay-dependent stabilizability condition which is expressed in terms of Linear Matrix Inequalities (LMIs) is derived to ensure the closed-loop system is exponentially stable with a prescribed α-convergence rate. The design of an observerbased output feedback controller can be carried out in a systematic and computationally efficient manner via the use of an LMI-based algorithm. A numerical example is given to illustrate the design procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the H∞ control problem of neural networks with time-varying delays. The system under consideration is subject to time-varying delays and various activation functions. Based on constructing some suitable Lyapunov-Krasovskii functionals, we establish new sufficient conditions for H∞ control for two cases of time-varying delays: (1) the delays are differentiable and have an upper bound of the delay-derivatives and (2) the delays are bounded but not necessary to be differentiable. The derived conditions are formulated in terms of linear matrix inequalities, which allow simultaneous computation of two bounds that characterize the exponential stability rate of the solution. Numerical examples are given to illustrate the effectiveness of our results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies the problem of designing observer-based controllers for a class of delayed neural networks with nonlinear observation. The system under consideration is subject to nonlinear observation and an interval time-varying delay. The nonlinear observation output is any nonlinear Lipschitzian function and the time-varying delay is not required to be differentiable nor its lower bound be zero. By constructing a set of appropriate Lyapunov-Krasovskii functionals and utilizing the Newton-Leibniz formula, some delay-dependent stabilizability conditions which are expressed in terms of Linear Matrix Inequalities (LMIs) are derived. The derived conditions allow simultaneous computation of two bounds that characterize the exponential stability rate of the closed-loop system. The unknown observer gain and the state feedback observer-based controller are directly obtained upon the feasibility of the derived LMIs stabilizability conditions. A simulation example is presented to verify the effectiveness of the proposed result.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article is concerned with the problem of state observer for complex large-scale systems with unknown time-varying delayed interactions. The class of large-scale interconnected systems under consideration is subjected to interval time-varying delays and nonlinear perturbations. By introducing a set of argumented Lyapunov–Krasovskii functionals and using a new bounding estimation technique, novel delay-dependent conditions for existence of state observers with guaranteed exponential stability are derived in terms of linear matrix inequalities (LMIs). In our design approach, the set of full-order Luenberger-type state observers are systematically derived via the use of an efficient LMI-based algorithm. Numerical examples are given to illustrate the effectiveness of the result