892 resultados para Experimental Tests
Resumo:
Total knee arthroplasty (TKA) has revolutionized the life of millions of patients and it is the most efficient treatment in cases of osteoarthritis. The increase in life expectancy has lowered the average age of the patient, which requires a more enduring and performing prosthesis. To improve the design of implants and satisfying the patient's needs, a deep understanding of the knee Biomechanics is needed. To overcome the uncertainties of numerical models, recently instrumented knee prostheses are spreading. The aim of the thesis was to design and manifacture a new prototype of instrumented implant, able to measure kinetics and kinematics (in terms of medial and lateral forces and patellofemoral forces) of different interchangeable designs of prosthesis during experiments tests within a research laboratory, on robotic knee simulator. Unlike previous prototypes it was not aimed for industrial applications, but purely focusing on research. After a careful study of the literature, and a preliminary analytic study, the device was created modifying the structure of a commercial prosthesis and transforming it in a load cell. For monitoring the kinematics of the femoral component a three-layers, piezoelettric position sensor was manifactured using a Velostat foil. This sensor has responded well to pilot test. Once completed, such device can be used to validate existing numerical models of the knee and of TKA and create new ones, more accurate.It can lead to refinement of surgical techniques, to enhancement of prosthetic designs and, once validated, and if properly modified, it can be used also intraoperatively.
Resumo:
Experimental tests have been completed for high-strength 8.8 bolts for studying their mechanical performance subjected to tensile loading. As observed from these tests, failure of structural bolts has been identified as in one of two ways: threads stripping and necking of the threaded portion of the bolt shank, which is possibly due to the degree of fit between internal and external threads. Following the experimental work, a numerical approach has been developed for demonstration of the tensile performance with proper consideration of tolerance class between bolts and nuts. The degree of fit between internal and external threads has been identified as a critical factor affecting failure mechanisms of high-strength structural bolts in tension, which is caused by the machining process. In addition, different constitutive material laws have been taken into account in the numerical simulation, demonstrating the entire failure mechanism for structural bolts with different tolerance classes in their threads. It is also observed that the bolt capacities are closely associated with their failure mechanisms.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Maschinenbau, Dissertation, 2016
Resumo:
Cold-formed steel members can be assembled in various combinations to provide cost-efficient and safe light gauge floor systems for buildings. Such Light gauge Steel Framing (LSF) systems are widely accepted in industrial and commercial building construction. An example application is in floor-ceiling systems. Light gauge steel floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was carried out to investigate its structural and fire resistance behaviour under standard fire conditions. In this research project full scale experimental tests of the new LSF floor system based on a composite ceiling unit were undertaken using a gas furnace at the Queensland University of Technology. Both the conventional and the new steel floor-ceiling systems were tested under structural and fire loads. Full scale fire tests provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system. This paper presents the details of this research into the structural and fire behaviour of light gauge steel floor systems protected by the new composite panel, and the results.
Resumo:
Purpose: The purpose of this study was to calculate mechanical properties of tough skinned vegetables as a part of Finite Element Modelling (FEM) and simulation of tissue damage during mechanical peeling of tough skinned vegetables. Design/methodology: There are some previous studies on mechanical properties of fruits and vegetables however, behaviour of tissue under different processing operations will be different. In this study indentation test was performed on Peel, Flesh and Unpeeled samples of pumpkin as a tough skinned vegetable. Additionally, the test performed in three different loading rates for peel: 1.25, 10, 20 mm/min and 20 mm/min for flesh and unpeeled samples respectively. The spherical end indenter with 8mm diameter used for the experimental tests. Samples prepare from defect free and ripped pumpkin purchased from local shops in Brisbane, Australia. Humidity and temperature were 20-55% and 20-250C respectively. Findings: Consequently, force deformation and stress and strain of samples were calculated and shown in presented figures. Relative contribution (%) of skin to different mechanical properties is computed and compared with data available from literature. According the results, peel samples had the highest value of rupture force (291N) and as well as highest value of firmness (1411Nm-1). Research limitations/implications: The proposed study focused on one type of tough skinned vegetables and one variety of pumpkin however, more tests will give better understandings of behaviours of tissue. Additionally, the behaviours of peel, unpeeled and flesh samples in different speed of loading will provide more details of tissue damages during mechanical loading. Originality/value: Mechanical properties of pumpkin tissue calculated using the results of indentation test, specifically the behaviours of peel, flesh and unpeeled samples were explored which is a new approach in Finite Element Modelling (FEM) of food processes. Keywords: Finite Element Modelling (FEM), relative contribution, firmness, toughness and rupture force.
Resumo:
This thesis provides an experimental and computational platform for investigating the performance and behaviour of water filled, plastic portable road safety barriers in an isolated impact scenario. A schedule of experimental impact tests were conducted assessing the impact response of an existing design of road safety barrier utilising a novel horizontal impact testing system. A coupled finite element and smooth particle hydrodynamic model of the barrier system was developed and validated against the results of the experimental tests. The validated model was subsequently used to assess the effect of certain composite materials on the impact performance of the water filled, portable road safety barrier system.
Resumo:
Este trabalho de pesquisa apresenta como objetivo principal o desenvolvimento de investigação experimental dinâmica sobre estrutura real de uma passarela tubular mista aço-concreto. O sistema estrutural objeto deste trabalho corresponde a uma passarela composta por três vãos (32,5m, 17,5m e 20,0m, respectivamente) e dois balanços (7,50m e 5,0m, respectivamente), com comprimento total de 82,5m. A passarela com estrutura contínua de aço com as ligações soldadas se apoia em quatro pórticos também de aço. Estruturalmente está constituída por duas treliças planas que se interligam através de contraventamentos horizontais fixados na corda superior e inferior da treliça e lajes de concreto, formando um sistema misto com interação completa. A estrutura está submetida correntemente à travessia de pedestres e ciclistas. Testes experimentais foram realizados sobre o sistema estrutural e confrontados com resultados numéricos. Para a modelagem numérica do sistema são empregadas técnicas usuais de discretização, via método dos elementos finitos (MEF), por meio do programa ANSYS. Os resultados experimentais são analisados de acordo com a metodologia desenvolvida, sendo realizada análise modal experimental para a determinação das propriedades dinâmicas: freqüências, modos e taxa de amortecimento, enquanto que os resultados da estrutura, em termos de aceleração de pico, são comparados com os valores limites propostos por diversos autores, normas e recomendações de projeto, para uma avaliação do desempenho da estrutura em relação a vibração quando solicitada pelo caminhar dos pedestres no que diz respeito a critério para conforto humano.
Resumo:
In this paper, the transverse rocking mechanism of a barrel vaulted structure subjected to horizontal cyclic loads is analysed by means of experimental tests on full scale model and by means of non-linear FE analyses. The study is part of an ongoing experimental and theoretical research program, developed by the University of Brescia, concerning the seismic behaviour of ancient masonry buildings. The scope of the paper is to provide some evidence of the rocking mechanism experienced by barrel vaulted structures under horizontal loading. The understanding of the behaviour of these structural systems is necessary for their seismic vulnerability assessment, as well as for the correct design of possible strengthening techniques. A numeric FE model was validated through comparison with the experimental results and it was used to verify the efficiency of two common strengthening solutions: the technique of the overlaying reinforced concrete slab and the technique of the thin spandrel walls. Experimental and numeric results will be discussed in the paper.
Resumo:
We propose and experimentally validate a first-principles based model for the nonlinear piezoelectric response of an electroelastic energy harvester. The analysis herein highlights the importance of modeling inherent piezoelectric nonlinearities that are not limited to higher order elastic effects but also include nonlinear coupling to a power harvesting circuit. Furthermore, a nonlinear damping mechanism is shown to accurately restrict the amplitude and bandwidth of the frequency response. The linear piezoelectric modeling framework widely accepted for theoretical investigations is demonstrated to be a weak presumption for near-resonant excitation amplitudes as low as 0.5 g in a prefabricated bimorph whose oscillation amplitudes remain geometrically linear for the full range of experimental tests performed (never exceeding 0.25% of the cantilever overhang length). Nonlinear coefficients are identified via a nonlinear least-squares optimization algorithm that utilizes an approximate analytic solution obtained by the method of harmonic balance. For lead zirconate titanate (PZT-5H), we obtained a fourth order elastic tensor component of c1111p =-3.6673× 1017 N/m2 and a fourth order electroelastic tensor value of e3111 =1.7212× 108 m/V. © 2010 American Institute of Physics.
Resumo:
Many assemblages contain numerous rare species, which can show large increases in abundances. Common species can become rare. Recent calls for experimental tests of the causes and consequences of rarity prompted us to investigate competition between co-existing rare and common species of intertidal gastropods. In various combinations, we increased densities of rare gastropod species to match those of common species to evaluate effects of intra- and interspecific competition on growth and survival of naturally rare or naturally common species at small and large densities. Rarity per se did not cause responses of rare species to differ from those of common species. Rare species did not respond to the abundances of other rare species, nor show consistently different responses from those of common species. Instead, individual species responded differently to different densities, regardless of whether they are naturally rare or abundant. This type of experimental evidence is important to be able to predict the effects of increased environmental variability on rare as opposed to abundant species and therefore, ultimately, on the structure of diverse assemblages. © 2012 Inter-Research.
--------------------------------------------------------------------------------
Reaxys Database Information|
--------------------------------------------------------------------------------
Resumo:
This paper presents experimental tests carried out on steel fibre reinforced concrete samples, including mechanical tests as well as non-destructive technique (electrical resistivity) and non destructive technique on cores (X-ray). Electrical resistivity measurements are done as a blind test, to characterise the electrical anisotropy and deduce the distribution and the orientation of fibres. These results are compared to X-ray imaging to check the quality of the non destructive evaluation. Then, flexural and compressive strength are measured on specimens to assess the influence of fibre distribution on the concrete properties.
Resumo:
As espumas de alumínio são materiais ultraleves, o que as torna atractivas para um largo espectro de aplicações comerciais na área da defesa, na indústria automóvel e aeroespacial, entre outras. Actualmente, há um grande interesse na utilização de espumas de alumínio em componentes estruturais ultraleves, incorporados em sistemas de absorção de energia para protecção contra o impacto. O recurso à simulação numérica para resolver problemas de engenharia em várias áreas é cada vez mais comum. A modelação numérica dos materiais assume vital importância quando o problema envolve a análise de processos tecnológicos como, por exemplo, a conformação plástica de materiais, ou a análise de estruturas. Deste modo, torna-se imprescindível garantir que a modelação dos materiais é de tal forma rigorosa que permite simular o melhor possível o seu comportamento real nas condições concretas da análise a realizar. A forma mais comum de garantir o rigor dos modelos utilizados é a validação dos modelos numéricos tendo por base resultados experimentais. Neste trabalho, fez-se a caracterização do comportamento mecânico das espumas de alumínio com nome comercial ALPORAS!, obtidas pelo processo de fabrico denominado expansão directa do metal fundido por adição de um agente expansor. Esta caracterização consistiu num conjunto de ensaios experimentais quer no regime quasi-estático, quer no regime dinâmico. No regime quasi-estático realizaram-se ensaios de compressão uniaxial e de compressão multiaxial. Para a caracterização no regime dinâmico foram realizados ensaios em barras de Hopkinson de polimetil-metacrilato (PMMA). Com base nos resultados experimentais obtidos determinaram-se os parâmetros dos dois modelos constitutivos para espumas metálicas implementados no programa comercial Abaqus™/Explicit. Estes modelos, e os respectivos parâmetros determinados, foram validados reproduzindo numericamente alguns ensaios experimentais quasi-estáticos e dinâmicos. Assim, verificou-se a adequabilidade dos modelos em diversas condições quer em termos de esforços quer em termos de regime de taxa de deformação Por último, desenvolveu-se uma estrutura inovadora para absorção de energia durante um impacto, constituída por componentes perfilados em liga de alumínio e por componentes em espumas de alumínio. Esta estrutura foi testada exclusivamente com recurso à simulação numérica, utilizando os modelos constitutivos validados anteriormente.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Previous research has shown that often there is clear inertia in individual decision making---that is, a tendency for decision makers to choose a status quo option. I conduct a laboratory experiment to investigate two potential determinants of inertia in uncertain environments: (i) regret aversion and (ii) ambiguity-driven indecisiveness. I use a between-subjects design with varying conditions to identify the effects of these two mechanisms on choice behavior. In each condition, participants choose between two simple real gambles, one of which is the status quo option. I find that inertia is quite large and that both mechanisms are equally important.
Las expectativas del alumno : su incidencia en el rendimiento y actitudes : un enfoque experimental.
Resumo:
Es un estudio del rendimiento académico, ya que adquiere demasiada importancia tanto para padres como para profesores.. Los sujetos experimentados son 34 alumnos de primer curso de Bachillerato de varios Institutos Salmantinos. Las variables dependientes que se tuvieron en cuenta en el experimento fueron las siguientes: la medida de rendimiento, y la medida de actitud de los sujetos. El estudio de campo se llevó a cabo con 58 sujetos de sexto curso de EGB del Colegio 'Verdemar' de Santander.. El proceso consta de dos partes, la primera de carácter descriptivo, mientras que una segunda parte, dividida en dos apartados de carácter práctico, un estudio de laboratorio y otro de tipo experimental.. Tests de rendimiento, cuestionario y bibliografía.. Estadística, análisis de la varianza junto a la prueba T, así como el estudio de la media estadística.. Las expectativas del alumno respecto del profesor influyeron en el rendimiento y en las actitudes del primero, de esta forma cuando los sujetos tenían unas expectativas positivas sobre su profesor rendían más y adquirían una actitud positiva hacia él que cuando estas expectativas eran negativas.. Los resultados obtenidos abrirán una vía para estudiar cómo y por qué las expectivas positivas del alumno respecto del profesor juegan un importante papel en la conducta de los alumnos..