934 resultados para Experimental Methods.
Resumo:
This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability.
Resumo:
The term fatigue loads on the Oyster Oscillating Wave Surge Converter (OWSC) is used to describe hydrostatic loads due to water surface elevation with quasi-static changes of state. Therefore a procedure to implement hydrostatic pressure distributions into finite element analysis of the structure is desired. Currently available experimental methods enable one to measure time variant water surface elevation at discrete locations either on or around the body of the scale model during tank tests. This paper discusses the development of a finite element analysis procedure to implement time variant, spatially distributed hydrostatic pressure derived from discretely measured water surface elevation. The developed method can process differently resolved (temporal and spatial) input data and approximate the elevation over the flap faces with user defined properties. The structural loads, namely the forces and moments on the body can then be investigated by post processing the numerical results. This method offers the possibility to process surface elevation or hydrostatic pressure data from computational fluid dynamics simulations and can thus be seen as a first step to a fluid-structure interaction model.
Resumo:
This paper presents the applications of a novel methodology to quantify saltwater intrusion parameters in laboratory-scale experiments. The methodology uses an automated image analysis procedure, minimizing manual inputs and the subsequent systematic errors that can be introduced. This allowed the quantification of the width of the mixing zone which is difficult to measure in experimental methods that are based on visual observations. Glass beads of different grain sizes were tested for both steady-state and transient conditions. The transient results showed good correlation between experimental and numerical intrusion rates. The experimental intrusion rates revealed that the saltwater wedge reached a steady state condition sooner while receding than advancing. The hydrodynamics of the experimental mixing zone exhibited similar
traits; a greater increase in the width of the mixing zone was observed in the receding saltwater wedge, which indicates faster fluid velocities and higher dispersion. The angle of intrusion analysis revealed the formation of a volume of diluted saltwater at the toe position when the saltwater wedge is prompted to recede. In addition, results of different physical repeats of the experiment produced an average coefficient of variation less than 0.18 of the measured toe length and width of the mixing zone.
Resumo:
The study of stability problems is relevant to the study of structure of a physical system. It 1S particularly important when it is not possible to probe into its interior and obtain information on its structure by a direct method. The thesis states about stability theory that has become of dominant importance in the study of dynamical systems. and has many applications in basic fields like meteorology, oceanography, astrophysics and geophysics- to mention few of them. The definition of stability was found useful 1n many situations, but inadequate in many others so that a host of other important concepts have been introduced in past many years which are more or less related to the first definition and to the common sense meaning of stability. In recent years the theoretical developments in the studies of instabilities and turbulence have been as profound as the developments in experimental methods. The study here Points to a new direction for stability studies based on Lagrangian formulation instead of the Hamiltonian formulation used by other authors.
Resumo:
We apply experimental methods to study the role of risk aversion on players’ behavior in repeated prisoners’ dilemma games. Faced with quantitatively equal discount factors, the most risk-averse players will choose Nash strategies more often in the presence of uncertainty than when future profits are discounted in a deterministic way. Overall, we find that risk aversion relates negatively with the frequency of collusive outcomes.
Resumo:
Experimental philosophy of language uses experimental methods developed in the cognitive sciences to investigate topics of interest to philosophers of language. This article describes the methodological background for the development of experimental approaches to topics in philosophy of language, distinguishes negative and positive projects in experimental philosophy of language, and evaluates experimental work on the reference of proper names and natural kind terms. The reliability of expert judgments vs. the judgments of ordinary speakers, the role that ambiguity plays in influencing responses to experiments, and the reliability of meta-linguistic judgments are also assessed.
Resumo:
The fruit of Indian Eugenia jambolana have been shown to have therapeutic properties, but because the therapeutic potential of a plant is related to the geographic region in which the plant was grown and to the part of the plant used, we investigated Brazilian Eugenia jambolana fruit using the same preparation and experimental methods as have been used in India. The well-established metabolic cage model was used to evaluate the physiological and metabolic parameters associated with streptozotocin-induced diabetes in rats (n = 10) which had been administered, by gavage, 50 mg per day of lyophilised Eugenia jambolana fruit-pulp extract for 41 days. We found that, compared to untreated controls, rats treated with the lyophilised fruit-pulp showed no observable difference in body weight, food or water intake, urine volume, glycaemia, urinary urea and glucose, hepatic glycogen, or on serum levels of total cholesterol, HDL cholesterol or triglycerides. No change was observed in the masses of epididymal or retroperitoneal adipose tissue or of soleus or extensor digitorum longus muscles. This lack of any apparent effect on the diabetes may be attributable to the regional ecosystem where the fruit was collected and/or to the severity of the induced diabetes. (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
The IR-spectrum of the isonicotinamide molecule (C(2)H(2)NC(3)H(2)CONH(2)) is studied by means of theoretical and experimental methods. For an appropriate representation of the molecular environment, Gaussian basis sets to the atoms of these molecule are built and then contracted (5s and 6s5p). For evaluation of the quality of contracted basis sets in molecular calculations, we have accomplished calculations of the total and the orbital (HOMO and HOMO-1) energies in the HF-Roothaan method for the molecule studied. The results obtained with the contracted basis sets [5s/6s5p] are compared to values obtained with our (21s/22s14p) basis sets and with those obtained with the D95, 6-31G, and 6-311G basis sets from literature. It was added one d polarization function in the [6s5p] contracted basis set for C ((3)P) atom, which was used in combination with the basis sets for H ((2)S), N ((4)S). and O((3)P) atoms to calculate the infrared spectrum of isonicotinamide. The calculations were performed at B3LYP level and were compared to corresponding experimental values also obtained in our laboratory. The theoretical results in comparison with the corresponding experimental values indicate a very good interpretation of the IR-spectrum and that the strategy of an appropriate representation of the molecular environment through the basis sets is an effective alternative to investigate vibrational theoretical properties of the nicotinamide molecule. (c) 2006 Published by Elsevier B.V.
Resumo:
Statement of problem. Highly polished enamel surfaces arc recommended for axial tooth surfaces that will serve as guiding planes and be contacted by component parts of a removable partial denture. There is little evidence to support the assumption that this tooth modification will provide accurate adaptation of the framework and prevent build-up of plaque.Purpose. The aim of this investigation was to evaluate the surface roughness of the tooth enamel, prepared to serve as guiding planes, with different polishing systems.Material and methods. Four different methods (designated A, B, C, and D) for finishing and polishing the prepared enamel surfaces of 20 freshly extracted third molar teeth were studied. Each method involved 3, 4, or 5 different steps. The roughness of each specimen was measured at the start of each method before recontouring, after recontouring, and after each step of the 4 finishing and polishing procedures. The 4 experimental finishing methods were applied after recontouring the axial surfaces (buccal, lingual, and proxinial) of each tooth. Thus the 20 teeth (60 surfaces) were finished and polished by use of 1 of the experimental methods. Surface roughness was measured with a profilometer (mum); the readings of the unpolished enamel Surfaces were recorded as control measurements. Results were statistically analyzed with one-way analysis of variance followed by Tukey's test at the 95% level of confidence.Results. The highest roughness mean values (14.41 mum to 16.44 mum) were found when the diamond bur was used at a high speed for tooth preparation. A significant decrease in roughness values was observed with the diamond bur at a low speed (P<.05). Analysis of the roughness values revealed that all polishing methods produced surface roughness similar to that of the corresponding control teeth.Conclusion. Within the limitations of this study, all finishing procedures tested effectively promoted an enamel surface similar to the original unpolished enamel.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The electronic stopping cross section (SCS) of Al2O3 for proton beams is studied both experimentally and theoretically. The measurements are made for proton energies from 40 keV up to 1 MeV, which cover the maximum stopping region, using two experimental methods, the transmission technique at low energies (similar to 40-175 keV) and the Rutherford backscattering at high energies (approximate to 190-1000 keV). These new data reveal an increment of 16% in the SCS around the maximum stopping with respect to older measurements. The theoretical study includes electronic stopping power calculations based on the dielectric formalism and on the transport cross section (TCS) model to describe the electron excitations of Al2O3. The non-linear TCS calculations of the SCS for valence electrons together with the generalized oscillator strengths (GOS) model for the core electrons compare well with the experimental data in the whole range of energies considered.
Resumo:
Epoxies find variety of applications and during these applications they get exposed to different conditions like elevated temperatures, hydrothermal, chemical, etc. It has been observed that properties of epoxies do get affected substantially if exposed to these conditions for extended period of time and because of the variety of applications, researchers found it necessary to study their effects on the thermal, mechanical, physical and chemical properties. However in this report the focus is on studying effects of physical aging on mechanical properties of EPON 862 with DETDA as its curing agent, where physical aging is aging is the condition which occurs due to exposure to elevated temperatures. A fair amount of computational work has been performed on EPON 862- DETDA to study the effects of physical aging, however very little known work has been done experimentally to study these effects. Young’s modulus, hardness, failure strength, strain to failure, density and glass transition are the properties which have been obtained using various experimental methods - tensile testing, nanoindentation and differential scanning calorimetry. Experimental work on other epoxies have shown no increase or very slight increase in the Young’s modulus and hardness with increased aging time, also decrease in failure strength and strain to failure and through this work on EPON 862- DETDA we can observe similar trends.
Resumo:
Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.