994 resultados para Expansion multi-périodes
Resumo:
In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.
Resumo:
The axial coefficients of thermal expansion (CTE) of various carbon nanotubes (CNTs), i.e., single-wall carbon nanotubes (SWCNTs), and some multi-wall carbon nanotubes (MWCNTs), were predicted using molecular dynamics (MDs) simulations. The effects of two parameters, i.e., temperature and the CNT diameter, on CTE were investigated extensively. For all SWCNTs and MWCNTs, the obtained results clearly revealed that within a wide low temperature range, their axial CTEs are negative. As the diameter of CNTs decreases, this temperature range for negative axial CTEs becomes narrow, and positive axial CTEs appear in high temperature range. It was found that the axial CTEs vary nonlinearly with the temperature, however, they decrease linearly as the CNT diameter increases. Moreover, within a wide temperature range, a set of empirical formulations was proposed for evaluating the axial CTEs of armchair and zigzag SWCNTs using the above two parameters. Finally, it was found that the absolute value of the negative axial CTE of any MWCNT is much smaller than those of its constituent SWCNTs, and the average value of the CTEs of its constituent SWCNTs. The present fundamental study is very important for understanding the thermal behaviors of CNTs in such as nanocomposite temperature sensors, or nanoelectronics devices using CNTs.
Resumo:
Railway capacity determination and expansion are very important topics. In prior research, the competition between different entities such as train services and train types, on different network corridors however have been ignored, poorly modelled, or else assumed to be static. In response, a comprehensive set of multi-objective models have been formulated in this article to perform a trade-off analysis. These models determine the total absolute capacity of railway networks as the most equitable solution according to a clearly defined set of competing objectives. The models also perform a sensitivity analysis of capacity with respect to those competing objectives. The models have been extensively tested on a case study and their significant worth is shown. The models were solved using a variety of techniques however an adaptive E constraint method was shown to be most superior. In order to identify only the best solution, a Simulated Annealing meta-heuristic was implemented and tested. However a linearization technique based upon separable programming was also developed and shown to be superior in terms of solution quality but far less in terms of computational time.
Resumo:
This thesis focused upon the development of improved capacity analysis and capacity planning techniques for railways. A number of innovations were made and were tested on a case study of a real national railway. These techniques can reduce the time required to perform decision making activities that planners and managers need to perform. As all railways need to be expanded to meet increasing demands, the presumption that analytical capacity models can be used to identify how best to improve an existing network at least cost, was fully investigated. Track duplication was the mechanism used to expanding a network's capacity, and two variant capacity expansion models were formulated. Another outcome of this thesis is the development and validation of bi objective models for capacity analysis. These models regulate the competition for track access and perform a trade-off analysis. An opportunity to develop more general mulch-objective approaches was identified.
Resumo:
Background: Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results: Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions: Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.
Resumo:
The different formalisms for the representation of thermodynamic data on dilute multicomponent solutions are critically reviewed. The thermodynamic consistency of the formalisms are examined and the interrelations between them are highlighted. The options are constraints in the use of the interaction parameter and Darken's quadratic formalisms for multicomponent solutions are discussed in the light of the available experimental data. Truncatred Maclaurin series expansion is thermodynamically inconsistent unless special relations between interaction parameters are invoked. However, the lack of strict mathematical consistency does not affect the practical use of the formalism. Expressions for excess partial properties can be integrated along defined composition paths without significant loss of accuracy. Although thermodynamically consistent, the applicability of Darken's quadratic formalism to strongly interacting systems remains to be established by experiment.
Resumo:
Writing the hindered rotor (hr) partition function as the trace of (rho) over cap = e(-beta(H) over cap hr), we approximate it by the sum of contributions from a set of points in position space. The contribution of the density matrix from each point is approximated by performing a local harmonic expansion around it. The highlight of this method is that it can be easily extended to multidimensional systems. Local harmonic expansion leads to a breakdown of the method a low temperatures. In order to calculate the partition function at low temperatures, we suggest a matrix multiplication procedure. The results obtained using these methods closely agree with the exact partition function at all temperature ranges. Our method bypasses the evaluation of eigenvalues and eigenfunctions and evaluates the density matrix for internal rotation directly. We also suggest a procedure to account for the antisymmetry of the total wavefunction in the same. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Market squid (Loligo opalescens) plays a vital role in the California ecosystem and serves as a major link in the food chain as both a predator and prey species. For over a century, market squid has also been harvested off the California coast from Monterey to San Pedro. Expanding global markets, coupled with a decline in squid product from other parts of the world, in recent years has fueled rapid expansion of the virtually unregulated California fishery. Lack of regulatory management, in combination with dramatic increases in fishing effort and landings, has raised numerous concerns from the scientific, fishing, and regulatory communities. In an effort to address these concerns, the National Oceanic and Atmospheric Administration’s (NOAA) Channel Islands National Marine Sanctuary (CINMS) hosted a panel discussion at the October 1997 California Cooperative Oceanic and Fisheries Investigations (CalCOFI) Conference; it focused on ecosystem management implications for the burgeoning market squid fishery. Both panel and audience members addressed issues such as: the direct and indirect effects of commercial harvesting upon squid biomass; the effects of harvest and the role of squid in the broader marine community; the effects of environmental variation on squid population dynamics; the sustainability of the fishery from the point of view of both scientists and the fishers themselves; and the conservation management options for what is currently an open access and unregulated fishery. Herein are the key points of the ecosystem management panel discussion in the form of a preface, an executive summary, and transcript. (PDF contains 33 pages.)
Resumo:
Along with its economic reform, China has experienced a rapid urbanization. This study mapped urban land expansion in China using high-resolution Landsat Thematic Mapper and Enhanced Thematic Mapper data of 1989/1990, 1995/1996 and 1999/2000 and analyzed its expansion modes and the driving forces underlying this process during 1990-2000. Our results show that China's urban land increased by 817 thousand hectares, of which 80.8% occurred during 1990-1995 and 19.2% during 1995-2000. It was also found that China's urban expansion had high spatial and temporal differences, such as four expansion modes, concentric, leapfrog, linear and multi-nuclei, and their combinations coexisted and expanded urban land area in the second 5 y was much less than that of the first 5 y. Case studies of the 13 mega cities showed that urban expansion had been largely driven by demographic change, economic growth, and changes in land use policies and regulations.
Resumo:
The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense (similar to 10(18) W/cm(2)) and short (similar to 1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.
Resumo:
The transverse filamentation of beams of fast electrons transported in solid targets irradiated by ultraintense (5 x 10(20) W cm(-2)), picosecond laser pulses is investigated experimentally. Filamentation is diagnosed by measuring the uniformity of a beam of multi-MeV protons accelerated by the sheath field formed by the arrival of the fast electrons at the rear of the target, and is investigated for metallic and insulator targets ranging in thickness from 50 to 1200 mu m. By developing an analytical model, the effects of lateral expansion of electron beam filaments in the sheath during the proton acceleration process is shown to account for measured increases in proton beam nonuniformity with target thickness for the insulating targets.
Resumo:
Electron energy transport experiments conducted on the Vulcan 100 TW laser facility with large area foil targets are described. For plastic targets it is shown, by the plasma expansion observed in shadowgrams taken after the interaction, that there is a transition between the collimated electron flow previously reported at the 10 TW power level to an annular electron flow pattern with a 20 degrees divergence angle for peak powers of 68 TW. Intermediate powers show that both the central collimated flow pattern and the surrounding annular-shaped heated region can co-exist. The measurements are consistent with the Davies rigid beam model for fast electron flow (Davies 2003 Phys. Rev. E 68 056404) and LSP modelling provides additional insight into the observed results.
Resumo:
This study attempts to establish a link between the reasonably well known nature of the progenitor of SN2011fe and its surrounding environment. This is done with the aim of enabling the identification of similar systems in the vast majority of the cases, when distance and epoch of discovery do not allow a direct approach. To study the circumstellar environment of SN2011fe we have obtained high-resolution spectroscopy of SN2011fe on 12 epochs, from 8 to 86 days after the estimated date of explosion, targeting in particular at the time evolution of CaII and NaI. Three main absorption systems are identified from CaII and NaI, one associated to the Milky Way, one probably arising within a high-velocity cloud, and one most likely associated to the halo of M101. The Galactic and host galaxy reddening, deduced from the integrated equivalent widths (EW) of the NaI lines are E(B-V)=0.011+/-0.002 and E(B-V)=0.014+/-0.002 mag, respectively. The host galaxy absorption is dominated by a component detected at the same velocity measured from the 21-cm HI line at the projected SN position (~180 km/s). During the ~3 months covered by our observations, its EW changed by 15.6+/-6.5 mA. This small variation is shown to be compatible with the geometric effects produced by therapid SN photosphere expansion coupled to the patchy fractal structure of the ISM. The observed behavior is fully consistent with ISM properties similar to those derived for our own Galaxy, with evidences for structures on scales
Resumo:
Specialist anti-social behaviour units are common within social housing providers, with many established in response to the policies of the New Labour governments of 1997–2010. These units now find themselves operating in a different political and financial environment. Following the English riots of 2011, the Coalition government, whilst imposing budgetary cuts across the public sector, called on social housing providers to intensify their role in tackling disorder. This article explores the habitus or working cultures within anti-social behaviour units post-New Labour. It does so through empirical research conducted in the aftermath of the English riots. The research finds that practitioners view their work as a core function of social housing provision. They have developed an understanding of human behaviour, which crosses the criminal and social policy fields with a wide skillset to match. A number of factors including national policy, community expectations, and multi-partnership engagement influence their dynamic working culture.
Resumo:
An inhomogeneous spatial distribution of laser accelerated carbon/oxygen ions produced via the hydrodynamic ambipolar expansion of CO2 clusters has been measured by using CR-39 detectors. An inhomogeneous etch pits spatial distribution has appeared on the etched CR-39 detector installed on the laser propagation direction, while homogeneous ones are appeared on those installed at 45°and 90°from the laser propagation direction. From the range of ions in CR-39 obtained by using the multi-step etching technique, the averaged energies of carbon/oxygen ions for all directions are determined as 0.78 ± 0.09 MeV/n. The number of ions in the laser propagation direction is about 1.5 times larger than those in other directions. The inhomogeneous etch pits spatial distribution in the laser propagation direction could originate from an ion beam collimation and modulation by the effect of electromagnetic structures created in the laser plasma.