939 resultados para Exotic plant species
Resumo:
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Resumo:
Melaleuca densispicata Byrnes is an uncommon species with a limited distribution, comprising disjunct populations in inland southern Queensland and northern New South Wales, Australia. It is a dense, woody shrub, 2–4 m in height, which exhibits a marked 'clumping' growth habit. It has thick, papery bark and displays many white flowers during spring or early summer. Although it has long been known to exist, M. densispicata was only formally described in 1984, and very little is currently known about its ecology or specific management requirements. There are only seven known subpopulations of the species across its range. A major population at the western limit of its distribution occurs on Currawinya National Park (28°52'S, 144°30'E). Here, it is locally abundant and listed as a noteworthy plant species under the Management Plan (Queensland Parks & Wildlife Service 2001). This study aimed to identify patterns in the distribution of M. densispicata in Currawinya National Park, describe its ecological niche and role, and provide management recommendations for the species within the study area. Recent anecdotal observations of recruitment failure in south-western Queensland (Peter McRae, QPWS, October 2004, pers. comm.; Dick O'Connell, local grazier, July 2005 pers. comm.) caused additional emphasis to be placed on the examination of recruitment and recruitment factors.
Resumo:
While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.
Resumo:
Aconophora compressa Walker (Hemiptera: Membracidae) was released in 1995 against the weed lantana in Australia, and is now found on multiple host plant species. The intensity and regularity at which A. compressa uses different host species was quantified in its introduced Australian range and also its native Mexican range. In Australia, host plants fell into three statistically defined categories, as indicated by the relative rates and intensities at which they were used in the field. Fiddlewood (Citharexylum spinosum L.: Verbenaceae) was used much more regularly and at higher densities than any other host sampled, and alone made up the first group. The second group, lantana (Lantana camara L.: Verbenaceae; pink variety) and geisha girl (Duranta erecta L.: Verbenaceae), were used less regularly and at much lower densities than fiddlewood. The third group, Sheena’s gold (another variety of D. erecta), jacaranda (Jacaranda mimosifolia D. Don: Bignoniaceae) and myoporum (Myoporum acuminatum R. Br.: Myoporaceae), were used infrequently and at even lower densities. In Mexico, the insect was found at relatively low densities on all hosts relative to those in Australia. Densities were highest on L. urticifolia, D. erecta and Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae), which were used at similar rates to one another. It was found also on a few other verbenaceous and non-verbenaceous host species but at even lower densities. The relative rate at which Citharexylum spp. and L. urticifolia were used could not be assessed in Mexico because A. compressa was found on only one plant of each species in areas where these host species co-occurred. The low rate at which A. compressa occurred on fiddlewood in Mexico is likely to be an artefact of the short-term nature of the surveys or differences in the suites of Citharexylum and Lantana species available there. These results provide further incentive to insist on structured and quantified surveys of non-target host use in the native range of potential biological control agents prior to host testing studies in quarantine.
Resumo:
Aconophora compressa is a gregarious, sap-sucking insect that uses multiple host plant species. Nymphal host plant species (and variety) significantly affected nymphal survival, nymphal development rate and the subsequent size and fecundity of adults, with fiddlewood ( Citharexylum spinosum ) being significantly best in all respects. Nymphs that developed on a relatively poor host ( Duranta erecta var “geisha girl”) and which were moved to fiddlewood as adults laid significantly fewer eggs (mean ± SE = 836 ± 130) than those that developed solely on fiddlewood (1,329 ± 105). Adults on geisha girl, regardless of having been reared as nymphs on fiddlewood or geisha girl, laid significantly fewer eggs (342 ± 83 and 317 ± 74, respectively) than adults on fiddlewood. A simple model that incorporates host plant related survival, development rate and fecundity suggests that the population dynamics of A. compressa are governed mainly by fiddlewood, the primary host. The results have general implications for understanding the population dynamics of herbivores that use multiple host plant species, and also for the way in which weed biological control host testing methods should be conducted.
Resumo:
Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.
Resumo:
Given the limited resources available for weed management, a strategic approach is required to give the best bang for your buck. The current study incorporates: (1) a model ensemble approach to identify areas of uncertainty and commonality regarding a species invasive potential, (2) current distribution of the invaded species, and (3) connectivity of systems to identify target regions and focus efforts for more effective management. Uncertainty in the prediction of suitable habitat for H. amplexicaulis (study species) in Australia was addressed in an ensemble-forecasting approach to compare distributional scenarios from four models (CLIMATCH; CLIMEX; boosted regression trees [BRT]; maximum entropy [Maxent]). Models were built using subsets of occurrence and environmental data. Catchment risk was determined through incorporating habitat suitability, the current abundance and distribution of H. amplexicaulis, and catchment connectivity. Our results indicate geographic differences between predictions of different approaches. Despite these differences a number of catchments in northern, central, and southern Australia were identified as high risk of invasion or further spread by all models suggesting they should be given priority for the management of H. amplexicaulis. The study also highlighted the utility of ensemble approaches in indentifying areas of uncertainty and commonality regarding the species invasive potential.
Resumo:
The occurrence of interstitial species in Astrebla grasslands in Australia are influenced by grazing and seasonal rainfall but the interactions of these two influences are complex. This paper describes three studies aimed at determining and explaining the changes in plant species richness and abundance of the interstitial species in a long-term sheep utilisation experiment in an Astrebla grassland in northern Queensland. In the first study, increasing utilisation increased the frequency of Dactyloctenium radulans (Button grass) and Brachyachne convergens (Downs couch) and reduced that of Streptoglossa adscendens (Mint bush). In the second study, seasonal rainfall variation between 1984 and 2009 resulted in large annual differences in the size of the seed banks of many species, but increasing utilisation consistently reduced the seed bank of species such as Astrebla spp. and S. adscendens and increased that of species such as B. convergens, D. radulans, Amaranthus mitchellii (Boggabri) and Boerhavia sp. (Tar vine). In the third study, the highest species richness occurred at the lightest utilisation because of the presence of a range of palatable forbs, especially legumes. Species richness was reduced as utilisation increased. Species richness in the grazing exclosure was low and similar to that at the heaviest utilisation where there was a reduction in the presence of palatable forb species. The pattern of highest species richness at the lightest grazing treatment was maintained across three sampling times, even with different amounts of seasonal rainfall, but there was a large yearly variation in both the density and frequency of many species. It was concluded that the maintenance of highest species richness at the lightest utilisation was not aligned with other data from this grazing experiment which indicated that the maximum sustainable wool production occurred at moderate utilisation.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
Exotic plant pests (EPPs) threaten production, market access and sustainability of Australian plant production systems. For the grains industry there are over 600 identified EPPs of which 54 are considered high priority, posing a significant threat. Despite Australia’s geographical isolation and strong quarantine systems, the threat from EPPs has never been higher with the increasing levels of travel and trade, emphasising the need for improving our efforts in prevention, preparedness and surveillance for EPPs.
Resumo:
Semi-natural grasslands are the most important agricultural areas for biodiversity. The present study investigates the effects of traditional livestock grazing and mowing on plant species richness, the main emphasis being on cattle grazing in mesic semi-natural grasslands. The two reviews provide a thorough assessment of the multifaceted impacts and importance of grazing and mowing management to plant species richness. It is emphasized that livestock grazing and mowing have partially compensated the suppression of major natural disturbances by humans and mitigated the negative effects of eutrophication. This hypothesis has important consequences for nature conservation: A large proportion of European species originally adapted to natural disturbances may be at present dependent on livestock grazing and / or mowing. Furthermore, grazing and mowing are key management methods to mitigate effects of nutrient-enrichment. The species composition and richness in old (continuously grazed), new (grazing restarting 3-8 years ago) and abandoned (over 10 years) pastures differed consistently across a range of spatial scales, and was intermediate in new pastures compared to old and abandoned pastures. In mesic grasslands most plant species were shown to benefit from cattle grazing. Indicator species of biologically valuable grasslands and rare species were more abundant in grazed than in abandoned grasslands. Steep S-SW-facing slopes are the most suitable sites for many grassland plants and should be prioritized in grassland restoration. The proportion of species trait groups benefiting from grazing was higher in mesic semi-natural grasslands than in dry and wet grasslands. Consequently, species trait responses to grazing and the effectiveness of the natural factors limiting plant growth may be intimately linked High plant species richness of traditionally mowed and grazed areas is explained by numerous factors which operate on different spatial scales. Particularly important for maintaining large scale plant species richness are evolutionary and mitigation factors. Grazing and mowing cause a shift towards the conditions that have occurred during the evolutionary history of European plant species by modifying key ecological factors (nutrients, pH and light). The results of this Dissertation suggest that restoration of semi-natural grasslands by private farmers is potentially a useful method to manage biodiversity in the agricultural landscape. However, the quality of management is commonly improper, particularly due to financial constraints. For enhanced success of restoration, management regulations in the agri-environment scheme need to be defined more explicitly and the scheme should be revised to encourage management of biodiversity.
Resumo:
Biological invasions affect biodiversity worldwide, and, consequently, the invaded ecosystems may suffer from significant losses in economic and cultural values. Impatiens glandulifera Royle (Balsaminaceae) is an invasive annual herb, native to the western Himalayas and introduced into Europe in the 19th century as a garden ornamental plant. The massive invasion of I. glandulifera is due to its high reproductive output, rapid growth and its ability to outcompete native species. In Finland, the first observations regarding the presence of I. glandulifera date from the year 1947, and today it is considered a serious problem in riparian habitats. The aim of this master’s thesis research is to reveal the population genetic structure of I. glandulifera in Finland and to find out whether there have been one or multiple invasions in Finland. The study focuses on investigating the origin of I. glandulifera in Southern Finland, by comparing plant samples from the Helsinki region with those from its native region and other regions of invasion. Samples from four populations in Helsinki and from the United Kingdom, Canada, India and Pakistan were collected and genotyped using 11 microsatellite markers. The genetic analyses were evaluated using the programs Arlequin and Structure. The results of the genetic analyses suggested that I. glandulifera has been introduced to Finland more than once. Multiple introductions are supported by the higher level of genetic diversity detected within and among Finnish populations than would be expected for a single introduction. Results of the Bayesian Structure analysis divided the four Finnish populations into four clusters. This geographical structure was further supported by pairwise Fst values among populations. The causes and potential consequences of such multiple introductions of I. glandulifera in Finland and further perspectives are discussed.
Resumo:
Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.