930 resultados para Exfoliated graphite
Resumo:
Objective: Patients using a removable prosthesis are susceptible to a variety of oral lesions that may progress to cancer. Toluidine blue (TB) staining is used to identify premalignant lesions, but the results are still controversial. Since micronuclei (MN) are a biomarker of genetic instability, the objective of this study was to determine the frequency of MN in white lesions of the oral mucosa and to compare the results with those of the TB test. Study Design: The study included 20 removable prosthesis users with white lesions that were previously classified as toluidine positive or negative. The frequency of MN was evaluated in exfoliated cells from lesions and normal mucosa. Nuclear anomalies were also registered. Results: A significant increase (p < 0.05) in the frequency of MN was observed in exfoliated cells from lesions compared to normal mucosal cells, and no relationship was seen with TB staining. Lifestyle factors or gender did not influence the results. Conclusions: The frequency of MN is a sensitive biomarker and can be used to predict genomic instability in white oral lesions. The MN assay may serve as a good parameter in the battery of tests used to identify high-risk individuals, contributing to the identification of the biological conditions of oral lesions. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Micronuclei (MN) in exfoliated epithelial cells are widely used as biomarkers of cancer risk in humans. MN are classified as biomarkers of the break age and loss of chromosomes. They are small, extra nuclear bodies that arise in dividing cells from centric chromosome/chromatid fragments or whole chromosomes/chromatids that lag behind in anaphase and are not included in the daughter nuclei in telophase. Buccal mucosa cells have been used in biomonitoring exposed populations because these cells are in the direct route of exposure to ingested pollutant, are capable of metabolizing proximate carcinogens to reactive chemicals, and are easily and rapidly collected by brushing the buccal mucosa. The objective of the present study was to further investigate if, and to what extent, different stains have an effect on the results of micronuclei studies in exfoliated cells. These techniques are: Papanicolaou (PAP), Modified Papanicolaou, May-Grünwald Giemsa (MGG), Giemsa, Harris’s Hematoxylin, Feulgen with Fast Green counterstain and Feulgen without counterstain.
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01×10−7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
In this work we employed a hybrid method, combining RF-magnetron sputtering with evaporation, for the deposition of tailor made metallic precursors, with varying number of Zn/Sn/Cu (ZTC) periods and compared two approaches to sulphurization. Two series of samples with 1×, 2× and 4× ZTC periods have been prepared. One series of precursors was sulphurized in a tubular furnace directly exposed to a sulphur vapour and N2+5% H2 flux at a pressure of 5.0×10+4 Pa. A second series of identical precursors was sulphurized in the same furnace but inside a graphite box where sulphur pellets have been evaporated again in the presence of N2+5% H2 and at the same pressure as for the sulphur flux experiments. The morphological and chemical analyses revealed a small grain structure but good average composition for all three films sulphurized in the graphite box. As for the three films sulphurized in sulphur flux grain growth was seen with the increase of the number of ZTC periods whilst, in terms of composition, they were slightly Zn poor. The films' crystal structure showed that Cu2ZnSnS4 is the dominant phase. However, in the case of the sulphur flux films SnS2 was also detected. Photoluminescence spectroscopy studies showed an asymmetric broad band emission whichoccurs in the range of 1–1.5 eV. Clearly the radiative recombination efficiency is higher in the series of samples sulphurized in sulphur flux. We have found that sulphurization in sulphur flux leads to better film morphology than when the process is carried out in a graphite box in similar thermodynamic conditions. Solar cells have been prepared and characterized showing a correlation between improved film morphology and cell performance. The best cells achieved an efficiency of 2.4%.
Resumo:
A low-cost disposable was developed for rapid detection of the protein biomarker myoglobin (Myo) as a model analyte. A screen printed electrode was modified with a molecularly imprinted material grafted on a graphite support and incorporated in a matrix composed of poly(vinyl chloride) and the plasticizer o-nitrophenyloctyl ether. The protein-imprinted material (PIM) was produced by growing a reticulated polymer around a protein template. This is followed by radical polymerization of 4-styrenesulfonic acid, 2-aminoethyl methacrylate hydrochloride, and ethylene glycol dimethacrylate. The polymeric layer was then covalently bound to the graphitic support, and Myo was added during the imprinting stage to act as a template. Non-imprinted control materials (CM) were also prepared by omitting the Myo template. Morphological and structural analysis of PIM and CM by FTIR, Raman, and SEM/EDC microscopies confirmed the modification of the graphite support. The analytical performance of the SPE was assessed by square wave voltammetry. The average limit of detection is 0.79 μg of Myo per mL, and the slope is −0.193 ± 0.006 μA per decade. The SPE-CM cannot detect such low levels of Myo but gives a linear response at above 7.2 μg · mL−1, with a slope of −0.719 ± 0.02 μA per decade. Interference studies with hemoglobin, bovine serum albumin, creatinine, and sodium chloride demonstrated good selectivity for Myo. The method was successfully applied to the determination of Myo urine and is conceived to be a promising tool for screening Myo in point-of-care patients with ischemia.
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01 × 10− 7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity.
Resumo:
The kinetics of GnP dispersion in polypropylene melt was studied using a prototype small scale modular extensional mixer. Its modular nature enabled the sequential application of a mixing step, melt relaxation, and a second mixing step. The latter could reproduce the flow conditions on the first mixing step, or generate milder flow conditions. The effect of these sequences of flow constraints upon GnP dispersion along the mixer length was studied for composites with 2 and 10 wt.% GnP. The samples collected along the first mixing zone showed a gradual decrease of number and size of GnP agglomerates, at a rate that was independent of the flow conditions imposed to the melt, but dependent on composition. The relaxation zone induced GnP re-agglomeration, and the application of a second mixing step caused variable dispersion results that were largely dependent on the hydrodynamic stresses generated.
Resumo:
Artigo publicado a convite da Society for Polymer Engineers
Resumo:
We investigated the influence of a hydrogenated disordered carbon (a-C:H) layer on the nucleation of diamond. Substrates c-Si<100>, SiAlON, and highly oriented pyrolytic graphite {0001} were used in this study. The substrate surfaces were characterized with Auger electron spectroscopy (AES) while diamond growth was followed with Raman spectroscopy and scanning electron microscopy (SEM). It was found that on silicon and SiAlON substrates the presence of the a-C:H layer enabled diamond to grow readily without any polishing treatment. Moreover, more continuous diamond films could be grown when the substrate was polished with diamond powder prior to the deposition of the a-C:H layer. This important result suggests that the nucleation of diamond occurs readily on disordered carbon surfaces, and that the formation of this type of layer is indeed one step in the diamond nucleation mechanism. Altogether, the data refute the argument that silicon defects play a direct role in the nucleation process. Auger spectra revealed that for short deposition times and untreated silicon surfaces, the deposited layer corresponds to an amorphous carbon layer. In these cases, the subsequent diamond nucleation was found to be limited. However, when the diamond nucleation density was found to be high; i.e., after lengthy deposits of a¿C:H or after diamond polishing, the Auger spectra suggested diamondlike carbon layers.
Resumo:
An analytical method for the determination of the anti-inflammatory drug 5-aminosalicylic acid (5-ASA) in pharmaceutical formulations using square wave voltammetry at pencil graphite electrodes was developed. After the optimization of the experimental conditions, calibration curves were obtained in the linear concentration range from 9.78 × 10-7 to 7.25 × 10-5 mol L-1 resulting in a limit of detection of 2.12 ± 0.05 x 10-8 mol L-1. Statistical tests showed that the concentrations of 5-ASA in commercial tablets and enemas obtained with the proposed voltammetric method agreed with HPLC values at a 95% confidence level.
Resumo:
It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.
Resumo:
In present work, we analyzed the copper electrodeposition onto GCE (System I) and HOPGE (System II) from perchlorate solutions. The current density transients obtained from system I and II were well described through a kinetic mechanism that involves four different contributions: (a) a Langmuir type adsorption process, b) an electron transfer from Cu2+→Cu+, (c) a 3D nucleation limited by a mass transfer reaction and (d) a proton reduction process. It was observed that the values of the nucleation rate, the number of active nucleation sites were increased with the overpotential and they are bigger onto GCE in comparison with HOPGE.
Resumo:
A method for the determination of trace amounts of palladium was developed using homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) followed by graphite furnace atomic absorption spectrometry (GFAAS). Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. This was applied to determine palladium in three types of water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added to the extraction cell which contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Parameters affecting extraction efficiency were investigated and optimized. Under the optimum conditions, the calibration graph was linear in the range of 1.0-200 µg L-1 with a limit of detection of 0.3 µg L-1. The performance of the method was evaluated for the extraction and determination of palladium in water samples and satisfactory results were obtained. In order to verify the accuracy of the approach, the standard addition method was applied for the determination of palladium in spiked synthetic samples and satisfactory results were obtained.