868 resultados para Exercise Performance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Lymphangioleiomyomatosis (LAM) is characterized by exercise performance impairment. Although airflow limitation is common, no previous studies have evaluated the prevalence and impact of dynamic hyperinflation (DH) in LAM. Objectives: To investigate the dynamic responses during maximal exercise and the prevalence, predictors, and repercussions of DH in LAM. Methods: Forty-two patients with LAM performed symptom-limited incremental cycle exercise and pulmonary functions tests (PFTs) and were compared with 10 age-matched healthy women. Dyspnea intensity, inspiratory capacity, oxygen saturation, and cardiac, metabolic, and respiratory variables were assessed during exercise. Patients with LAM also performed a 6-minute walk test (6MWT). Measurements and Main Results: Patients with LAM had higher baseline dyspnea, poorer quality of life, obstructive pattern, air trapping, and reduced diffusing capacity of carbon monoxide in PFTs. Although they had the same level of regular physical activity, their maximal exercise performance was reduced and was associated with ventilatory limitation, greater desaturation, and dyspnea. The prevalence of DH was high in LAM (55%), even in patients with mild spirometric abnormalities, and was correlated with airflow obstruction, air trapping, and diffusing capacity of carbon monoxide. Compared with the non-DH subgroup, the patients who developed DH had a ventilatory limitation contributing to exercise cessation on cycling and higher desaturation and dyspnea intensity during the 6MWT. Conclusions: Ventilatory limitation and gas exchange impairment are important causes of exercise limitation in LAM. DH is frequent in LAM, even in patients with mild spirometric abnormalities. DH was associated with the severity of disease, higher dyspnea, and lower oxygen saturation. In the 6MWT, desaturation and dyspnea were greater in patients with DH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The potential influence of magnesium on exercise performance is a subject of increasing interest. Magnesium has been shown to have bronchodilatatory properties in asthma and chronic obstructive pulmonary disease patients. The aim of this study was to investigate the effects of acute magnesium IV loading on the aerobic exercise performance of stable chronic obstructive pulmonary disease patients. METHODS: Twenty male chronic obstructive pulmonary disease patients (66.2 +/- 8.3 years old, FEV1: 49.3 +/- 19.8%) received an IV infusion of 2 g of either magnesium sulfate or saline on two randomly assigned occasions approximately two days apart. Spirometry was performed both before and 45 minutes after the infusions. A symptom-limited incremental maximal cardiopulmonary test was performed on a cycle ergometer at approximately 100 minutes after the end of the infusion. ClinicalTrials.gov: NCT00500864 RESULTS: Magnesium infusion was associated with significant reductions in the functional residual capacity (-0.41 l) and residual volume (-0.47 l), the mean arterial blood pressure (-5.6 mmHg) and the cardiac double product (734.8 mmHg.bpm) at rest. Magnesium treatment led to significant increases in the maximal load reached (+8 w) and the respiratory exchange ratio (0.06) at peak exercise. The subgroup of patients who showed increases in the work load equal to or greater than 5 w also exhibited significantly greater improvements in inspiratory capacity (0.29 l). CONCLUSIONS: The acute IV loading of magnesium promotes a reduction in static lung hyperinflation and improves the exercise performance in stable chronic obstructive pulmonary disease patients. Improvements in respiratory mechanics appear to be responsible for the latter finding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Exertional oscillatory ventilation (EOV) in heart failure may potentiate the negative effects of low cardiac output and high ventilation on exercise performance. We hypothesized that the presence of EOV might, per se, influence exercise capacity as evaluated by maximal cardiopulmonary exercise test. METHODS AND RESULTS: We identified 78 severe chronic heart failure patient pairs with and without EOV. Patients were matched for sex, age and peak oxygen consumption (VO2). Patients with EOV showed, for the same peak VO2, a lower workload (WL) at peak (DeltaWatts=5.8+/-23.0, P=0.027), a less efficient ventilation (higher VE/VCO2 slope: 38.0+/-8.3 vs. 32.8+/-6.3, P<0.001), lower peak exercise tidal volume (1.49+/-0.36 L vs. 1.61+/-0.46 L, P=0.015) and higher peak respiratory rate (34+/-7/min vs. 31+/-6/min, P=0.002). In 33 patients, EOV disappeared during exercise, whereas in 45 patients EOV persisted. Fifty percent of EOV disappearing patients had an increase in the VO2/WL relationship after EOV regression, consistent with a more efficient oxygen delivery to muscles. No cardiopulmonary exercise test parameter was associated with the different behaviour of VO2/WL. CONCLUSION: The presence of EOV negatively influences exercise performance of chronic heart failure patients likely because of an increased cost of breathing. EOV disappearance during exercise is associated with a more efficient oxygen delivery in several cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION We aimed to manipulate physiological determinants of severe exercise performance. We hypothesized that (1) beta-alanine supplementation would increase intramuscular carnosine and buffering capacity and dampen acidosis during severe cycling, (2) that high-intensity interval training (HIT) would enhance aerobic energy contribution during severe cycling, and (3) that HIT preceded by beta-alanine supplementation would have greater benefits. METHODS Sixteen active men performed incremental cycling tests and 90-s severe (110 % peak power) cycling tests at three time points: before and after oral supplementation with either beta-alanine or placebo, and after an 11-days HIT block (9 sessions, 4 × 4 min), which followed supplementation. Carnosine was assessed via MR spectroscopy. Energy contribution during 90-s severe cycling was estimated from the O2 deficit. Biopsies from m. vastus lateralis were taken before and after the test. RESULTS Beta-alanine increased leg muscle carnosine (32 ± 13 %, d = 3.1). Buffering capacity and incremental cycling were unaffected, but during 90-s severe cycling, beta-alanine increased aerobic energy contribution (1.4 ± 1.3 %, d = 0.5), concurrent with reduced O2 deficit (-5.0 ± 5.0 %, d = 0.6) and muscle lactate accumulation (-23 ± 30 %, d = 0.9), while having no effect on pH. Beta-alanine also enhanced motivation and perceived state during the HIT block. There were no between-group differences in adaptations to the training block, namely increased buffering capacity (+7.9 ± 11.9 %, p = 0.04, d = 0.6, n = 14) and glycogen storage (+30 ± 47 %, p = 0.04, d = 0.5, n = 16). CONCLUSIONS Beta-alanine did not affect buffering considerably, but has beneficial effects on severe exercise metabolism as well as psychological parameters during intense training phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this experiment was to investigate the influence of low dose bovine colostrum supplementation on exercise performance in cyclists over a 10 week period that included 5 days of high intensity training (HIT). Methods: Over 7 days of preliminary testing, 29 highly trained male road cyclists completed a VO2max test (in which their ventilatory threshold was estimated), a time to fatigue test at 110% of ventilatory threshold, and a 40 km time trial (TT40). Cyclists were then assigned to either a supplement (n = 14, 10 g/day bovine colostrum protein concentrate (CPC)) or a placebo group (n = 15, 10 g/day whey protein) and resumed their normal training. Following 5 weeks of supplementation, the cyclists returned to the laboratory to complete a second series of performance testing (week 7). They then underwent five consecutive days of HIT (week 8) followed by a further series of performance tests (week 9). Results: The influence of bovine CPC on TT40 performance during normal training was unclear (week 7: 1+/-3.1%, week 9: 0.1+/-2.1%; mean+/-90% confidence limits). However, at the end of the HIT period, bovine CPC supplementation, compared to the placebo, elicited a 1.9+/-2.2% improvement from baseline in TT40 performance and a 2.3+/-6.0% increase in time trial intensity (% VO2max), and maintained TT40 heart rate (2.5+/-3.7%). In addition, bovine CPC supplementation prevented a decrease in ventilatory threshold following the HIT period (4.6+/-4.6%). Conclusion: Low dose bovine CPC supplementation elicited improvements in TT40 performance during an HIT period and maintained ventilatory threshold following five consecutive days of HIT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the study was to investigate the physiological and psychological benefits provided by a self-selected health and wellness course on a racially and ethnically diverse student population. It was designed to determine if students from a 2-year Hispanic serving institution (HIS) from a large metropolitan area would enhance their capacity to perform physical activities, increase their knowledge of health topics and raise their exercise self-efficacy after completing a course that included educational and activity components for a period of 16 weeks. A total of 185 students voluntarily agreed to participate in the study. An experimental group was selected from six sections of a health and wellness course, and a comparison group from students in a student life skills course. All participants were given anthropometric tests of physical fitness, a knowledge test, and an exercise self-efficacy scale was given at the beginning and at the conclusion of the semester. An ANCOVA analyses with the pretest scores being the covariate and the dependent variable being the difference score, indicated a significant improvement of the experimental group in five of the seven anthropometric tests over the comparison group. In addition, the experimental group increased in two of the three sections of the exercise self-efficacy scale indicating greater confidence to participate in physical activities in spite of barriers over the comparison group. The experimental group also increased in knowledge of health related topics over the comparison group at the .05 significance level. Results indicated beneficial outcomes gained by students enrolled in a 16-week health and wellness course. The study has several implications for practitioners, faculty members, educational policy makers and researchers in terms of implementation of strategies to promote healthy behaviors in college students and, to encourage them to engage in regular physical activities throughout their college years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We compared the effects of an ice-slush beverage (ISB) and a cool liquid beverage (CLB) on cycling performance, changes in rectal temperature (T (re)) and stress responses in hot, humid conditions. Ten trained male cyclists/triathletes completed two exercise trials (75 min cycling at similar to 60% peak power output + 50 min seated recovery + 75% peak power output x 30 min performance trial) on separate occasions in 34A degrees C, 60% relative humidity. During the recovery phase before the performance trial, the athletes consumed either the ISB (mean +/- A SD -0.8 +/- A 0.1A degrees C) or the CLB (18.4 +/- A 0.5A degrees C). Performance time was not significantly different after consuming the ISB compared with the CLB (29.42 +/- A 2.07 min for ISB vs. 29.98 +/- A 3.07 min for CLB, P = 0.263). T (re) (37.0 +/- A 0.3A degrees C for ISB vs. 37.4 +/- A 0.2A degrees C for CLB, P = 0.001) and physiological strain index (0.2 +/- A 0.6 for ISB vs. 1.1 +/- A 0.9 for CLB, P = 0.009) were lower at the end of recovery and before the performance trial after ingestion of the ISB compared with the CLB. Mean thermal sensation was lower (P < 0.001) during recovery with the ISB compared with the CLB. Changes in plasma volume and the concentrations of blood variables (i.e., glucose, lactate, electrolytes, cortisol and catecholamines) were similar between the two trials. In conclusion, ingestion of ISB did not significantly alter exercise performance even though it significantly reduced pre-exercise T (re) compared with CLB. Irrespective of exercise performance outcomes, ingestion of ISB during recovery from exercise in hot humid environments is a practical and effective method for cooling athletes following exercise in hot environments.