928 resultados para Evolutionary multi-objective programming
Resumo:
Tuning compilations is the process of adjusting the values of a compiler options to improve some features of the final application. In this paper, a strategy based on the use of a genetic algorithm and a multi-objective scheme is proposed to deal with this task. Unlike previous works, we try to take advantage of the knowledge of this domain to provide a problem-specific genetic operation that improves both the speed of convergence and the quality of the results. The evaluation of the strategy is carried out by means of a case of study aimed to improve the performance of the well-known web server Apache. Experimental results show that a 7.5% of overall improvement can be achieved. Furthermore, the adaptive approach has shown an ability to markedly speed-up the convergence of the original strategy.
Resumo:
Market mechanisms are a means by which resources in contention can be allocated between contending parties, both in human economies and those populated by software agents. Designing such mechanisms has traditionally been carried out by hand, and more recently by automation. Assessing these mechanisms typically involves them being evaluated with respect to multiple conflicting objectives, which can often be nonlinear, noisy, and expensive to compute. For typical performance objectives, it is known that designed mechanisms often fall short on being optimal across all objectives simultaneously. However, in all previous automated approaches, either only a single objective is considered, or else the multiple performance objectives are combined into a single objective. In this paper we do not aggregate objectives, instead considering a direct, novel application of multi-objective evolutionary algorithms (MOEAs) to the problem of automated mechanism design. This allows the automatic discovery of trade-offs that such objectives impose on mechanisms. We pose the problem of mechanism design, specifically for the class of linear redistribution mechanisms, as a naturally existing multi-objective optimisation problem. We apply a modified version of NSGA-II in order to design mechanisms within this class, given economically relevant objectives such as welfare and fairness. This application of NSGA-II exposes tradeoffs between objectives, revealing relationships between them that were otherwise unknown for this mechanism class. The understanding of the trade-off gained from the application of MOEAs can thus help practitioners with an insightful application of discovered mechanisms in their respective real/artificial markets.
Resumo:
Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.
Resumo:
Global warming mitigation has recently become a priority worldwide. A large body of literature dealing with energy related problems has focused on reducing greenhouse gases emissions at an engineering scale. In contrast, the minimization of climate change at a wider macroeconomic level has so far received much less attention. We investigate here the issue of how to mitigate global warming by performing changes in an economy. To this end, we make use of a systematic tool that combines three methods: linear programming, environmentally extended input output models, and life cycle assessment principles. The problem of identifying key economic sectors that contribute significantly to global warming is posed in mathematical terms as a bi criteria linear program that seeks to optimize simultaneously the total economic output and the total life cycle CO2 emissions. We have applied this approach to the European Union economy, finding that significant reductions in global warming potential can be attained by regulating specific economic sectors. Our tool is intended to aid policymakers in the design of more effective public policies for achieving the environmental and economic targets sought.
Resumo:
The objective of this thesis work is to develop and study the Differential Evolution Algorithm for multi-objective optimization with constraints. Differential Evolution is an evolutionary algorithm that has gained in popularity because of its simplicity and good observed performance. Multi-objective evolutionary algorithms have become popular since they are able to produce a set of compromise solutions during the search process to approximate the Pareto-optimal front. The starting point for this thesis was an idea how Differential Evolution, with simple changes, could be extended for optimization with multiple constraints and objectives. This approach is implemented, experimentally studied, and further developed in the work. Development and study concentrates on the multi-objective optimization aspect. The main outcomes of the work are versions of a method called Generalized Differential Evolution. The versions aim to improve the performance of the method in multi-objective optimization. A diversity preservation technique that is effective and efficient compared to previous diversity preservation techniques is developed. The thesis also studies the influence of control parameters of Differential Evolution in multi-objective optimization. Proposals for initial control parameter value selection are given. Overall, the work contributes to the diversity preservation of solutions in multi-objective optimization.
Resumo:
Understanding the machinery of gene regulation to control gene expression has been one of the main focuses of bioinformaticians for years. We use a multi-objective genetic algorithm to evolve a specialized version of side effect machines for degenerate motif discovery. We compare some suggested objectives for the motifs they find, test different multi-objective scoring schemes and probabilistic models for the background sequence models and report our results on a synthetic dataset and some biological benchmarking suites. We conclude with a comparison of our algorithm with some widely used motif discovery algorithms in the literature and suggest future directions for research in this area.
Resumo:
Hub Location Problems play vital economic roles in transportation and telecommunication networks where goods or people must be efficiently transferred from an origin to a destination point whilst direct origin-destination links are impractical. This work investigates the single allocation hub location problem, and proposes a genetic algorithm (GA) approach for it. The effectiveness of using a single-objective criterion measure for the problem is first explored. Next, a multi-objective GA employing various fitness evaluation strategies such as Pareto ranking, sum of ranks, and weighted sum strategies is presented. The effectiveness of the multi-objective GA is shown by comparison with an Integer Programming strategy, the only other multi-objective approach found in the literature for this problem. Lastly, two new crossover operators are proposed and an empirical study is done using small to large problem instances of the Civil Aeronautics Board (CAB) and Australian Post (AP) data sets.
Resumo:
Les systèmes logiciels sont devenus de plus en plus répondus et importants dans notre société. Ainsi, il y a un besoin constant de logiciels de haute qualité. Pour améliorer la qualité de logiciels, l’une des techniques les plus utilisées est le refactoring qui sert à améliorer la structure d'un programme tout en préservant son comportement externe. Le refactoring promet, s'il est appliqué convenablement, à améliorer la compréhensibilité, la maintenabilité et l'extensibilité du logiciel tout en améliorant la productivité des programmeurs. En général, le refactoring pourra s’appliquer au niveau de spécification, conception ou code. Cette thèse porte sur l'automatisation de processus de recommandation de refactoring, au niveau code, s’appliquant en deux étapes principales: 1) la détection des fragments de code qui devraient être améliorés (e.g., les défauts de conception), et 2) l'identification des solutions de refactoring à appliquer. Pour la première étape, nous traduisons des régularités qui peuvent être trouvés dans des exemples de défauts de conception. Nous utilisons un algorithme génétique pour générer automatiquement des règles de détection à partir des exemples de défauts. Pour la deuxième étape, nous introduisons une approche se basant sur une recherche heuristique. Le processus consiste à trouver la séquence optimale d'opérations de refactoring permettant d'améliorer la qualité du logiciel en minimisant le nombre de défauts tout en priorisant les instances les plus critiques. De plus, nous explorons d'autres objectifs à optimiser: le nombre de changements requis pour appliquer la solution de refactoring, la préservation de la sémantique, et la consistance avec l’historique de changements. Ainsi, réduire le nombre de changements permets de garder autant que possible avec la conception initiale. La préservation de la sémantique assure que le programme restructuré est sémantiquement cohérent. De plus, nous utilisons l'historique de changement pour suggérer de nouveaux refactorings dans des contextes similaires. En outre, nous introduisons une approche multi-objective pour améliorer les attributs de qualité du logiciel (la flexibilité, la maintenabilité, etc.), fixer les « mauvaises » pratiques de conception (défauts de conception), tout en introduisant les « bonnes » pratiques de conception (patrons de conception).
Resumo:
Muchas de las nuevas aplicaciones emergentes de Internet tales como TV sobre Internet, Radio sobre Internet,Video Streamming multi-punto, entre otras, necesitan los siguientes requerimientos de recursos: ancho de banda consumido, retardo extremo-a-extremo, tasa de paquetes perdidos, etc. Por lo anterior, es necesario formular una propuesta que especifique y provea para este tipo de aplicaciones los recursos necesarios para su buen funcionamiento. En esta tesis, proponemos un esquema de ingeniería de tráfico multi-objetivo a través del uso de diferentes árboles de distribución para muchos flujos multicast. En este caso, estamos usando la aproximación de múltiples caminos para cada nodo egreso y de esta forma obtener la aproximación de múltiples árboles y a través de esta forma crear diferentes árboles multicast. Sin embargo, nuestra propuesta resuelve la fracción de la división del tráfico a través de múltiples árboles. La propuesta puede ser aplicada en redes MPLS estableciendo rutas explícitas en eventos multicast. En primera instancia, el objetivo es combinar los siguientes objetivos ponderados dentro de una métrica agregada: máxima utilización de los enlaces, cantidad de saltos, el ancho de banda total consumido y el retardo total extremo-a-extremo. Nosotros hemos formulado esta función multi-objetivo (modelo MHDB-S) y los resultados obtenidos muestran que varios objetivos ponderados son reducidos y la máxima utilización de los enlaces es minimizada. El problema es NP-duro, por lo tanto, un algoritmo es propuesto para optimizar los diferentes objetivos. El comportamiento que obtuvimos usando este algoritmo es similar al que obtuvimos con el modelo. Normalmente, durante la transmisión multicast los nodos egresos pueden salir o entrar del árbol y por esta razón en esta tesis proponemos un esquema de ingeniería de tráfico multi-objetivo usando diferentes árboles para grupos multicast dinámicos. (en el cual los nodos egresos pueden cambiar durante el tiempo de vida de la conexión). Si un árbol multicast es recomputado desde el principio, esto podría consumir un tiempo considerable de CPU y además todas las comuicaciones que están usando el árbol multicast serán temporalmente interrumpida. Para aliviar estos inconvenientes, proponemos un modelo de optimización (modelo dinámico MHDB-D) que utilice los árboles multicast previamente computados (modelo estático MHDB-S) adicionando nuevos nodos egreso. Usando el método de la suma ponderada para resolver el modelo analítico, no necesariamente es correcto, porque es posible tener un espacio de solución no convexo y por esta razón algunas soluciones pueden no ser encontradas. Adicionalmente, otros tipos de objetivos fueron encontrados en diferentes trabajos de investigación. Por las razones mencionadas anteriormente, un nuevo modelo llamado GMM es propuesto y para dar solución a este problema un nuevo algoritmo usando Algoritmos Evolutivos Multi-Objetivos es propuesto. Este algoritmo esta inspirado por el algoritmo Strength Pareto Evolutionary Algorithm (SPEA). Para dar una solución al caso dinámico con este modelo generalizado, nosotros hemos propuesto un nuevo modelo dinámico y una solución computacional usando Breadth First Search (BFS) probabilístico. Finalmente, para evaluar nuestro esquema de optimización propuesto, ejecutamos diferentes pruebas y simulaciones. Las principales contribuciones de esta tesis son la taxonomía, los modelos de optimización multi-objetivo para los casos estático y dinámico en transmisiones multicast (MHDB-S y MHDB-D), los algoritmos para dar solución computacional a los modelos. Finalmente, los modelos generalizados también para los casos estático y dinámico (GMM y GMM Dinámico) y las propuestas computacionales para dar slución usando MOEA y BFS probabilístico.
Resumo:
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
Resumo:
A fast Knowledge-based Evolution Strategy, KES, for the multi-objective minimum spanning tree, is presented. The proposed algorithm is validated, for the bi-objective case, with an exhaustive search for small problems (4-10 nodes), and compared with a deterministic algorithm, EPDA and NSGA-II for larger problems (up to 100 nodes) using benchmark hard instances. Experimental results show that KES finds the true Pareto fronts for small instances of the problem and calculates good approximation Pareto sets for larger instances tested. It is shown that the fronts calculated by YES are superior to NSGA-II fronts and almost as good as those established by EPDA. KES is designed to be scalable to multi-objective problems and fast due to its small complexity.
Resumo:
For many years, drainage design was mainly about providing sufficient network capacity. This traditional approach had been successful with the aid of computer software and technical guidance. However, the drainage design criteria had been evolving due to rapid population growth, urbanisation, climate change and increasing sustainability awareness. Sustainable drainage systems that bring benefits in addition to water management have been recommended as better alternatives to conventional pipes and storages. Although the concepts and good practice guidance had already been communicated to decision makers and public for years, network capacity still remains a key design focus in many circumstances while the additional benefits are generally considered secondary only. Yet, the picture is changing. The industry begins to realise that delivering multiple benefits should be given the top priority while the drainage service can be considered a secondary benefit instead. The shift in focus means the industry has to adapt to new design challenges. New guidance and computer software are needed to assist decision makers. For this purpose, we developed a new decision support system. The system consists of two main components – a multi-criteria evaluation framework for drainage systems and a multi-objective optimisation tool. Users can systematically quantify the performance, life-cycle costs and benefits of different drainage systems using the evaluation framework. The optimisation tool can assist users to determine combinations of design parameters such as the sizes, order and type of drainage components that maximise multiple benefits. In this paper, we will focus on the optimisation component of the decision support framework. The optimisation problem formation, parameters and general configuration will be discussed. We will also look at the sensitivity of individual variables and the benchmark results obtained using common multi-objective optimisation algorithms. The work described here is the output of an EngD project funded by EPSRC and XP Solutions.