845 resultados para Event-based timing
Resumo:
OBJECTIVE: To develop a behavioural observation method to simultaneously assess distractors and communication/teamwork during surgical procedures through direct, on-site observations; to establish the reliability of the method for long (>3 h) procedures. METHODS: Observational categories for an event-based coding system were developed based on expert interviews, observations and a literature review. Using Cohen's κ and the intraclass correlation coefficient, interobserver agreement was assessed for 29 procedures. Agreement was calculated for the entire surgery, and for the 1st hour. In addition, interobserver agreement was assessed between two tired observers and between a tired and a non-tired observer after 3 h of surgery. RESULTS: The observational system has five codes for distractors (door openings, noise distractors, technical distractors, side conversations and interruptions), eight codes for communication/teamwork (case-relevant communication, teaching, leadership, problem solving, case-irrelevant communication, laughter, tension and communication with external visitors) and five contextual codes (incision, last stitch, personnel changes in the sterile team, location changes around the table and incidents). Based on 5-min intervals, Cohen's κ was good to excellent for distractors (0.74-0.98) and for communication/teamwork (0.70-1). Based on frequency counts, intraclass correlation coefficient was excellent for distractors (0.86-0.99) and good to excellent for communication/teamwork (0.45-0.99). After 3 h of surgery, Cohen's κ was 0.78-0.93 for distractors, and 0.79-1 for communication/teamwork. DISCUSSION: The observational method developed allows a single observer to simultaneously assess distractors and communication/teamwork. Even for long procedures, high interobserver agreement can be achieved. Data collected with this method allow for investigating separate or combined effects of distractions and communication/teamwork on surgical performance and patient outcomes.
Resumo:
Online services are no longer isolated. The release of public APIs and technologies such as web hooks are allowing users and developers to access their information easily. Intelligent agents could use this information to provide a better user experience across services, connecting services with smart automatic. behaviours or actions. However, agent platforms are not prepared to easily add external sources such as web services, which hinders the usage of agents in the so-called Evented or Live Web. As a solution, this paper introduces an event-based architecture for agent systems, in accordance with the new tendencies in web programming. In particular, it is focused on personal agents that interact with several web services. With this architecture, called MAIA, connecting to new web services does not involve any modification in the platform.
Resumo:
Traffic flow time series data are usually high dimensional and very complex. Also they are sometimes imprecise and distorted due to data collection sensor malfunction. Additionally, events like congestion caused by traffic accidents add more uncertainty to real-time traffic conditions, making traffic flow forecasting a complicated task. This article presents a new data preprocessing method targeting multidimensional time series with a very high number of dimensions and shows its application to real traffic flow time series from the California Department of Transportation (PEMS web site). The proposed method consists of three main steps. First, based on a language for defining events in multidimensional time series, mTESL, we identify a number of types of events in time series that corresponding to either incorrect data or data with interference. Second, each event type is restored utilizing an original method that combines real observations, local forecasted values and historical data. Third, an exponential smoothing procedure is applied globally to eliminate noise interference and other random errors so as to provide good quality source data for future work.
Resumo:
Traditional visual servoing systems have been widely studied in the last years. These systems control the position of the camera attached to the robot end-effector guiding it from any position to the desired one. These controllers can be improved by using the event-based control paradigm. The system proposed in this paper is based on the idea of activating the visual controller only when something significant has occurred in the system (e.g. when any visual feature can be loosen because it is going outside the frame). Different event triggers have been defined in the image space in order to activate or deactivate the visual controller. The tests implemented to validate the proposal have proved that this new scheme avoids visual features to go out of the image whereas the system complexity is reduced considerably. Events can be used in the future to change different parameters of the visual servoing systems.
Resumo:
Event-based visual servoing is a recently presented approach that performs the positioning of a robot using visual information only when it is required. From the basis of the classical image-based visual servoing control law, the scheme proposed in this paper can reduce the processing time at each loop iteration in some specific conditions. The proposed control method enters in action when an event deactivates the classical image-based controller (i.e. when there is no image available to perform the tracking of the visual features). A virtual camera is then moved through a straight line path towards the desired position. The virtual path used to guide the robot improves the behavior of the previous event-based visual servoing proposal.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Over the past years, the paradigm of component-based software engineering has been established in the construction of complex mission-critical systems. Due to this trend, there is a practical need for techniques that evaluate critical properties (such as safety, reliability, availability or performance) of these systems. In this paper, we review several high-level techniques for the evaluation of safety properties for component-based systems and we propose a new evaluation model (State Event Fault Trees) that extends safety analysis towards a lower abstraction level. This model possesses a state-event semantics and strong encapsulation, which is especially useful for the evaluation of component-based software systems. Finally, we compare the techniques and give suggestions for their combined usage
Middleware for reactive components: An integrated use of context, roles and event based coordination
Resumo:
In this paper we show how event processing over semantically annotated streams of events can be exploited, for implementing tracing and tracking of products in supply chains through the automated generation of linked pedigrees. In our abstraction, events are encoded as spatially and temporally oriented named graphs, while linked pedigrees as RDF datasets are their specific compositions. We propose an algorithm that operates over streams of RDF annotated EPCIS events to generate linked pedigrees. We exemplify our approach using the pharmaceuticals supply chain and show how counterfeit detection is an implicit part of our pedigree generation. Our evaluation results show that for fast moving supply chains, smaller window sizes on event streams provide significantly higher efficiency in the generation of pedigrees as well as enable early counterfeit detection.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.