733 resultados para Eutectic Solidification
Resumo:
In this paper we derive an approach for the effective utilization of thermodynamic data in phase-field simulations. While the most widely used methodology for multi-component alloys is following the work by Eiken et al. (2006), wherein, an extrapolative scheme is utilized in conjunction with the TQ interface for deriving the driving force for phase transformation, a corresponding simplistic method based on the formulation of a parabolic free-energy model incorporating all the thermodynamics has been laid out for binary alloys in the work by Folch and Plapp (2005). In the following, we extend this latter approach for multi-component alloys in the framework of the grand-potential formalism. The coupling is applied for the case of the binary eutectic solidification in the Cr-Ni alloy and two-phase solidification in the ternary eutectic alloy (Al-Cr-Ni). A thermodynamic justification entails the basis of the formulation and places it in context of the bigger picture of Integrated Computational Materials Engineering. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Strontium modification is known to alter the amount, characteristics, and distribution of porosity in Al-Si castings. Although many theories have been proposed to account for these effects, most can be considered inadequate because of their failure to resolve contradictions and discrepancies in the literature. In an attempt to critically appraise some of these theories, the amount, distribution, and morphology of porosity were examined in sand-cast plates of Sr-free and Sr-containing pure Al, Al-l wt pet Si, and Al-9 wt pet Si alloys. Statistical significance testing was used to verify apparent trends in the porosity data. No apparent differences in the amount, distribution, and morphology of porosity were observed between Sr-free and Sr-containing alloys with no or very small eutectic volume fractions. However, Sr modification significantly changed the amount, distribution, and morphology of porosity in alloys with a significant volume fraction of eutectic. ne addition of Sr reduced porosity in the hot spot region of the casting, and the pores became well dispersed and rounded. This result can be explained by considering the combined effect of the casting design and the differences in the pattern of eutectic solidification between unmodified and Sr-modified alloys.
Resumo:
From recent published data, it is still unclear whether combining additions of Na and Sr have synergistic effects or deleterious interactions, This paper clarifies the interactions between these two modifiers and investigates the effects of such interactions on alloy solidification and castability. It was found that combined additions of Sr and Na do not appear to cause improvement of the modification of the eutectic microstructure even after only a short period after addition. Na addition may promote Sr vaporization and/or oxidation kinetically. leading to a quicker loss of both modifiers, which is blamed for the rapid loss of the modification effect during melt holding. Quenching trials during the eutectic arrest indicate that addition of Sr into Na-modified melts does not alter the eutectic solidification behaviour The effect of Na on eutectic solidification dominates, and the eutectic is observed to evolve with a significant dependency on the thermal gradient, Combining Sr and Na additions produced no beneficial effects on porosity and casting defects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Soldering alloys based oft the Sn-Cu alloy system are amongst the most favourable lead-free alternatives due to a range of attractive properties. Trace additions of Ni have been found to significantly improve the soldering characteristics of these alloys (reduced bridging etc.). This paper examines the mechanisms underlying the improvement in soldering properties of Sn-0.7 mass%Cu eutectic alloys modified with concentrations of Ni ranging front 0 to 1000 ppm. The alloys were investigated by thermal analysis during solidification, as well as optical/SEM microanalyses of fully solidified samples anti samples quenched during solidification. It is concluded that Ni additions dramatically alter the nucleation patterns and solidification behaviour of the Sn-Cu6Sn5 eutectic anti that these changes are related to the superior soldering characteristics of the Ni-modified Sn-0.7 mass%Cu alloys.
Resumo:
Strontium is the most widely used and a very effective element for modifying the morphology of eutectic silicon, while Ti and B are commonly present in the commercial grain refiners used for Al-Si alloys. Systematic studies on the effects of combined additions of Sr and different AlTiB grain refiners on the Al + Si eutectic and primary aluminium solidification have been performed. While slight coarsening of both eutectic Si and primary aluminium grains occurs during holding, no obvious interactions are observed between Sr and AlTiB grain refiners when the addition level of grain refiners is low. As a result, a well-modified and grain refined structure was obtained. However, strong negative interactions between Sr and Al1.5Ti1.5B3 were observed as the addition level of the grain refiner increases. It was found that these interactions have a much more profound impact on the eutectic solidification than the primary Al solidification. The melt treated with combined additions of Sr and Al1.5Ti1.5B still shows good grain refinement efficiency even after losing its modification completely. The mechanism responsible for such negative interactions is further discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Analysis of intra- and inter-phase distribution of modifying elements in aluminium-silicon alloys is difficult due to the low concentrations used. This research utilises a mu-XRF (X-ray fluorescence) technique at the SPring-8 synchrotron radiation facility X-ray source and reveals that the modifying element strontium segregates exclusively to the eutectic silicon phase and the distribution of strontium within this phase is relatively homogeneous. This has important implications for the fundamental mechanisms of eutectic modification in hypoeutectic aluminium-silicon alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Attempts were made to produce directionally solidified, specifically grain aligned Al-6 wt pct Ni eutectic alloy using a laboratory scale ESR unit. For this purpose sand cast alloy electrodes were electroslag remelted under different mold conditions. The grain structure of the ingots obtained from these meltings showed that insulated silica molds gave the best vertical alignment of grains along the length of the ingot. The NiAl3 fibers within the grains tended to fan out and there was only a preferred alignment of fibers along the growth direction under the conditions of our experiments. The ESR parameters most suitable for vertical alignment of eutectic grains have been identified. In some electroslag remelting trials ingots were grown on a seed ingot. This resulted in a fewer vertical grains compared to the case when no seed ingot was used. The sand cast specimen of the eutectic exhibited a maximum tensile strength of around 88.2 MN/m2 (9.0 kg/mm2) whereas conventional ESR using water cooled mold gave strength value of 98.0 MN/m2 (10 kg/mm2). The directionally solidified ESR material showed longitudinal tensile strength as high as 213.7 MN/m2 (21.8 kg/mm2) which could be further increased to 220.6 MN/m2 (22.5 kg/mm2) by using the seed ingot. The average growth rate was varied between 5 to 25 mm/min during electroslag remelting in this study. The flow stresses, tangent modulus and ultimate tensile strength of directionally solidified eutectic increased with increasing growth rates.
Resumo:
The interaction between laminar Rayleigh-Benard convection and directional solidification is studied for the case of an eutectic solution kept in a rectangular cavity cooled from the top. Experiments and numerical simulations are carried out using an NH4Cl-H2O solution as the model fluid. The flow is visualized using a sheet of laser light scattered by neutrally buoyant, hollow-glass spheres seeded in the fluid. The numerical modeling is performed using a pressure-based finite-volume method according to the SIMPLER algorithm. The present configuration enables us to visualize flow vortices in the presence of a continuously evolving solid/liquid interface. Clear visualization of the Rayleigh-Benard convective cells and their interaction with the solidification front are obtained. It is observed that the convective cells are characterized by zones of up-flow and down-flow, resulting in the development of a nonplanar interface. Because of the continuous advancement of the solid/liquid interface, the effective liquid height of the cavity keeps decreasing. Once the height of the fluid layer falls below a critical value, the convective cells become weaker and eventually die out, leading to the growth of a planar solidification front. Results of flow visualization and temperature measurement are compared with those from the numerical simulation, and a good agreement is found.
Resumo:
Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 in drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.
Resumo:
Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 in drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.
Resumo:
Liquids of silver-copper alloys with near eutectic compositions embedded in a copper matrix were undercooled. The structural and microstructural investigations of these alloys solidified from undercooled temperature indicated the absence of both the eutectic reaction and diffusionless transformation below the equal free energy curve (T0). Instead the liquid maintained local equilibrium with the copper dendrites continuously until it intersected the extended solidus of the silver rich solid solution.
Resumo:
Al-10.98 pct Si-4.9 pct Ni ternary eutectic alloy was unidirectionally solidified at growth rates from 1.39μm/sec to 6.95μm/sec. Binary Al-Ni and Al-Si eutectics prepared from the same purity metals were also solidified under similar conditions to characterize the growth conditions under the conditions of present study. NiAl3 phase appeared as fibers in the binary Al-Ni eutectic and silicon appeared as irregular plates in the binary Al-Si eutectic. However, in the ternary Al-Si-Ni eutectic alloy both NiAl3 and silicon phases appeared as irregular plates dispersed in α-Al phase, without any regular repctitive arrangement. The size and spacing of NiAl3 and Si platelets in cone shaped colonies decreased with an increase in the growth rate of the ternary eutectic. Examination of specimen quenched during unidirectional solidification indicated that the ternary eutectic grows with a non-planar interface with both Si and NiAl3 phases protruding into the liquid. It is concluded that it will be difficult to grow regular ternary eutectic structures even if only one phase has a high entropy of melting. The tensile strength and modulus of unidirectionally solidified Al-Si-Ni eutectic was lower than the chill cast alloys of the same composition, and decreased with a decrease in growth rate. Tensile modulus and strength of ternary Al-Si-Ni eutectic alloys was greater than binary Al-Si eutectic alloy under similar growth conditions, both in the chill cast and in unidirectionally solidified conditions.
Resumo:
An in situ bulk ultrafine bimodal eutectic Al-Cu-Si composite was synthesized by solidification. This heterostructured composite with microstructural length scale hierarchy in the eutectic microstructure, which combines an ultrafine-scale binary cellular eutectic (alpha-Al + Al2Cu) and a nanometer-sized anomalous ternary eutectic (alpha-Al + Al2Cu + Si), exhibits high fracture strength (1.1 +/- 0.1 GPa) and large compressive plastic strain (11 +/- 2%) at room temperature. The improved compressive plasticity of the bimodal-nanoeutectic composite originates from homogeneous and uniform distribution of inhomogeneous plastic deformation (localized shear bands), together with strong interaction between shear bands in the spatially heterogeneous structure.
Resumo:
In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.