894 resultados para Ethyl biodiesel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of biodiesel is increasing as an attractive fuel due to the depleting fossil fuel resources and environmental degradation. This paper presents results of an investigation on the potentials of biodiesel as an alternative fuel and main substitute of diesel oil, comparing the CO2 emissions of the main fuels in the Brazilian market with those of biodiesel, in pure form or blended in different proportions with diesel oil (2%, 5%, and 20%, called B2, B5, and B20, respectively). The results of the study are shown in ton CO2 per m(3) and ton CO2 per year of fuel. The fuels were analyzed considering their chemical composition, stoichiometric combustion parameters and mean consumption for a single vehicle. The fuels studied were: gasoline, diesel oil, anhydrous ethyl alcohol (anhydrous ethanol), and biodiesel from used frying oil and from soybean oil. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. With data provided by the Brazilian Association of Automotive Vehicle Manufacturers (ANFAVEA) for the number of vehicles produced in Brazil, the emissions of CO2 for the national fleet in 2007 were obtained per type of fuel. With data provided by the Brazilian Department of Transit (DENATRAN) concerning the number of diesel vehicles in the last five years in Brazil, the total CO2 emissions and the percentage that they would decrease in the case of use of pure biodiesel, B100, or several mixtures, B2, B5 and B20, were calculated. Estimates of CO2 emissions for a future scenario considering the mixtures B5 and B20 are also included in this article. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that the head office world energetics is leaning in the fossil fuels. However, the world panorama is changing quickly, for linked reasons to three of the humanity's great concerns in that century beginning: environment, global economy and energy. The biodiesel production is based on the transesterificação of vegetable oils or animal fats, using catalysts homogeneous or heterogeneous. The process of heterogeneous transesterificação presents lower conversions in comparison with the homogeneous, however, it doesn't present corrosion problems and it reduces to the occurrence of parallel reactions as saponification. In this sense, this work has for purpose the synthesis of a heterogeneous catalyst, KNO3/Al2O3, that soon afterwards was used in the reaction of transesterificação of the oil of the Helianthus annuus L. (sunflower). The solid materials (it supports and catalyst) they were analyzed by diffraction of ray-X (XRD) and electronic microscope of sweeping (MEV). After the analysis of Al2O3, a structure monophase amorphous tetragonal was verified, with characteristic patterns of that material, what could not be visualized in the difratograma of the catalyst. The biodiesel obtained with 4% wt. of KNO3/Al2O3 it was what obtained a better cinematic viscosity 8,3 mm2/s, comparing with the norms of ANP, and it also presented the best conversion tax in ethyl ésteres, in accordance with the quantitative measure starting from TG, that was of 60%. While the biodiesel with 6% wt. and with 8% wt. of KNO3/Al2O3 it was it that no transesterificou, because it was observed in the analysis termogravimétrica of those two materials, a single thermal event, that it corresponds the decomposition or volatilization of the triglycerides

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to analyze the oxidative stability of biodiesel from jatropha obtained from different purification processes, three wet processes with different drying (in a vacuum oven, conventional oven and in anhydrous sodium sulfate) and dry (purification with magnesium silicate adsorbent). Raw materials of different qualities (jatropha crop ancient and recent crop) were used. The Jatropha oil was extracted by mechanical extraction and refined. The Jatropha biodiesel was obtained by the transesterification reaction in ethyl route using alkaline catalysis. The biodiesel samples were characterized by analysis of water content, carbon residue, Absorption Spectroscopy in the Infrared Region and Thermogravimetry. Thermogravimetric curves of purified PUsv* PUsq* and had higher initial decomposition temperatures, indicating that the most stable, followed by samples PU* and PUSC*. Besides the sample SP* is a smaller initial temperature, confirming the sample without purification to be less thermally stable. The percentage mass loss of the purified samples showed conversion of about 98.5%. The results of analyzes carbon residue and infrared suggested that contamination by impurities is the main factor for decreased oxidative stability of biodiesel. The oxidative stability was assessed from periodic monitoring, using the techniques of Rancimat, peroxide index, acid value and Pressurized Differential Scanning Calorimetry. Samples of biodiesel from jatropha which showed better oxidative stability were of the best quality raw material and wet scrubbing: PUsq* with dry chemical, using anhydrous sodium sulfate and PUsv* with vacuum drying, which had oxidative stability 6 hours in Rancimat time 0 days, within the limits established by the Technical Regulation No. 4/2012 of the ANP, without the addition of antioxidant, suggesting that these procedures the least influence on the oxidative stability of biodiesel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the transesterification of jupati (Raphia taedigera Mart.) oil using ethanol and acid catalyst was examined. The production of biodiesel was performed using a central composite design (CCD). A range of values for catalyst concentration (1 to 4.21%), temperature (70-80 °C), and the molar ratio of alcohol to oil (6:1-13.83:1) were tested, and ester content, viscosity, and yield were the response variables. The synthesis process was optimised using response surface methodology (RSM), resulting in the following optimal conditions for the production of jupati ethyl esters: a catalyst concentration of 3.85% at 80 °C and an alcohol-to-oil molar ratio of 10:1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance and emissions behavior of a Rover 1S/60 turboshaft engine when operated with several blends of aviation kerosene and ox tallow ethyl-ester are shown in this article. The tests were performed with a compressor shaft coupled to an hydraulic dynamometer where data of power and mass fuel flow were collected to determine the brake specific fuel consumption. A flue gas analyzer was positioned at the exhaust duct to collect oxygen, carbon dioxide, carbon monoxide and nitrous oxides. An increase in the specific fuel consumption was observed due to the lesser lower heating value of the most oxygenated blends. However, reductions of CO, CO2 and NO (x) have been observed and no-significant ill effects have occurred in the turbine operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)