995 resultados para Estructura nuclear
Resumo:
The cross section for the removal of high-momentum protons from 16O is calculated for high missing energies. The admixture of high-momentum nucleons in the 16O ground state is obtained by calculating the single-hole spectral function directly in the finite nucleus with the inclusion of short-range and tensor correlations induced by a realistic meson-exchange interaction. The presence of high-momentum nucleons in the transition to final states in 15N at 60¿100 MeV missing energy is converted to the coincidence cross section for the (e,e¿p) reaction by including the coupling to the electromagnetic probe and the final state interactions of the outgoing proton in the same way as in the standard analysis of the experimental data. Detectable cross sections for the removal of a single proton at these high missing energies are obtained which are considerably larger at higher missing momentum than the corresponding cross sections for the p-wave quasihole transitions. Cross sections for these quasihole transitions are compared with the most recent experimental data available.
Resumo:
The nonmesonic decay of the hypertriton is calculated based on a hypertriton wave function and 3N scattering states, which are rigorous solutions of three-body Faddeev equations using realistic NN and hyperon-nucleon interactions. The pion exchange together with heavier meson exchanges for the ¿N¿NN transition is considered. The total nonmesonic decay rate is found to be 0.5% of the free ¿ decay rate. Integrated as well as differential decay rates are given. The p- and n-induced decays are discussed thoroughly and it is shown that the corresponding total rates cannot be measured individually.
Resumo:
We extend the relativistic mean field theory model of Sugahara and Toki by adding new couplings suggested by modern effective field theories. An improved set of parameters is developed with the goal to test the ability of the models based on effective field theory to describe the properties of finite nuclei and, at the same time, to be consistent with the trends of Dirac-Brueckner-Hartree-Fock calculations at densities away from the saturation region. We compare our calculations with other relativistic nuclear force parameters for various nuclear phenomena.
Resumo:
We study the properties of the 1S0 pairing gap in low-density neutron matter. Different corrections to the lowest-order scattering length approximation are explored, resulting in a strong suppression with respect to the BCS result.
Resumo:
In the Thomas-Fermi model, calculations are presented for nuclei beyond the nuclear drip line at zero temperature. These nuclei are in equilibrium by the presence of an external gas, as may be envisaged in the astrophysical scenario. We find that there is a limiting asymmetry beyond which these nuclei can no longer be made stable.