946 resultados para Estimation of gaze direction
Resumo:
We describe a method for text entry based on inverse arithmetic coding that relies on gaze direction and which is faster and more accurate than using an on-screen keyboard. These benefits are derived from two innovations: the writing task is matched to the capabilities of the eye, and a language model is used to make predictable words and phrases easier to write.
Resumo:
Yangtze finless porpoises were surveyed by using simultaneous visual and acoustical methods from 6 November to 13 December 2006. Two research vessels towed stereo acoustic data loggers, which were used to store the intensity and sound source direction of the high frequency sonar signals produced by finless porpoises at detection ranges up to 300 m on each side of the vessel. Simple stereo beam forming allowed the separation of distinct biosonar sound source, which enabled us to count the number of vocalizing porpoises. Acoustically, 204 porpoises were detected from one vessel and 199 from the other vessel in the same section of the Yangtze River. Visually, 163 and 162 porpoises were detected from two vessels within 300 m of the vessel track. The calculated detection probability using acoustic method was approximately twice that for visual detection for each vessel. The difference in detection probabilities between the two methods was caused by the large number of single individuals that were missed by visual observers. However, the sizes of large groups were underestimated by using the acoustic methods. Acoustic and visual observations complemented each other in the accurate detection of porpoises. The use of simple, relatively inexpensive acoustic monitoring systems should enhance population surveys of free-ranging, echolocating odontocetes. (C) 2008 Acoustical Society of America.
Resumo:
Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea. The studied images show three nonlinear internal waves in a packet. A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images. Assuming that the ocean is a two-layer finite depth system, we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula. Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.
Resumo:
A generic, hierarchical, and multifidelity unit cost of acquisition estimating methodology for outside production machined parts is presented. The originality of the work lies with the method’s inherent capability of being able to generate multilevel and multifidelity cost relations for large volumes of parts utilizing process, supply chain costing data, and varying degrees of part design definition information. Estimates can be generated throughout the life cycle of a part using different grades of the combined information available. Considering design development for a given part, additional design definition may be used as it becomes available within the developed method to improve the quality of the resulting estimate. Via a process of analogous classification, parts are classified into groups of increasing similarity using design-based descriptors. A parametric estimating method is then applied to each subgroup of the machined part commodity in the direction of improved classification and using which, a relationship which links design variables to manufacturing cycle time may be generated. A rate cost reflective of the supply chain is then applied to the cycle time estimate for a given part to arrive at an estimate of make cost which is then totalled with the material and treatments cost components respectively to give an overall estimate of unit acquisition cost. Both the rate charge applied and the treatments cost calculated for a given procured part is derived via the use of ratio analysis.
Resumo:
Mechanisms for visuospatial cognition are often inferred directly from errors in behavioral reports of remembered target direction. For example, gaze-centered target representations for reach were first inferred from reach overshoots of target location relative to gaze. Here, we report evidence for the hypothesis that these gaze-dependent reach errors stem predominantly from misestimates of hand rather than target position, as was assumed in all previous studies. Subjects showed typical gaze-dependent overshoots in complete darkness, but these errors were entirely suppressed by continuous visual feedback of the finger. This manipulation could not affect target representations, so the suppressed gaze-dependent errors must have come from misestimates of hand position, likely arising in a gaze-dependent transformation of hand position signals into visual coordinates. This finding has broad implications for any task involving localization of visual targets relative to unseen limbs, in both healthy individuals and patient populations, and shows that response-related transformations cannot be ignored when deducing the sources of gaze-related errors.
Resumo:
21st century climate change is projected to result in an intensification of the global hydrological cycle, but there is substantial uncertainty in how this will impact freshwater availability. A relatively overlooked aspect of this uncertainty pertains to how different methods of estimating potential evapotranspiration (PET) respond to changing climate. Here we investigate the global response of six different PET methods to a 2 °C rise in global mean temperature. All methods suggest an increase in PET associated with a warming climate. However, differences in PET climate change signal of over 100% are found between methods. Analysis of a precipitation/PET aridity index and regional water surplus indicates that for certain regions and GCMs, choice of PET method can actually determine the direction of projections of future water resources. As such, method dependence of the PET climate change signal is an important source of uncertainty in projections of future freshwater availability.
Resumo:
We introduce a modified conditional logit model that takes account of uncertainty associated with mis-reporting in revealed preference experiments estimating willingness-to-pay (WTP). Like Hausman et al. [Journal of Econometrics (1988) Vol. 87, pp. 239-269], our model captures the extent and direction of uncertainty by respondents. Using a Bayesian methodology, we apply our model to a choice modelling (CM) data set examining UK consumer preferences for non-pesticide food. We compare the results of our model with the Hausman model. WTP estimates are produced for different groups of consumers and we find that modified estimates of WTP, that take account of mis-reporting, are substantially revised downwards. We find a significant proportion of respondents mis-reporting in favour of the non-pesticide option. Finally, with this data set, Bayes factors suggest that our model is preferred to the Hausman model.
Resumo:
It is reported in the literature that distances from the observer are underestimated more in virtual environments (VEs) than in physical world conditions. On the other hand estimation of size in VEs is quite accurate and follows a size-constancy law when rich cues are present. This study investigates how estimation of distance in a CAVETM environment is affected by poor and rich cue conditions, subject experience, and environmental learning when the position of the objects is estimated using an experimental paradigm that exploits size constancy. A group of 18 healthy participants was asked to move a virtual sphere controlled using the wand joystick to the position where they thought a previously-displayed virtual cube (stimulus) had appeared. Real-size physical models of the virtual objects were also presented to the participants as a reference of real physical distance during the trials. An accurate estimation of distance implied that the participants assessed the relative size of sphere and cube correctly. The cube appeared at depths between 0.6 m and 3 m, measured along the depth direction of the CAVE. The task was carried out in two environments: a poor cue one with limited background cues, and a rich cue one with textured background surfaces. It was found that distances were underestimated in both poor and rich cue conditions, with greater underestimation in the poor cue environment. The analysis also indicated that factors such as subject experience and environmental learning were not influential. However, least square fitting of Stevens’ power law indicated a high degree of accuracy during the estimation of object locations. This accuracy was higher than in other studies which were not based on a size-estimation paradigm. Thus as indirect result, this study appears to show that accuracy when estimating egocentric distances may be increased using an experimental method that provides information on the relative size of the objects used.
Resumo:
This paper presents a model for the control of the radiation pattern of a circular array of antennas, shaping it to address the radiation beam in the direction of the user, in order to reduce the transmitted power and to attenuate interference. The control of the array is based on Artificial Neural Networks (ANN) of the type RBF (Radial Basis Functions), trained from samples generated by the Wiener equation. The obtained results suggest that the objective was reached.
Resumo:
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the selection of coaster brook trout (a life history variant of Salvelinus fontinalis,) spawning sites. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. Throughout this site, the river is relatively similar along its length with regard to stream channel and substrate features. A monitoring well system consisting of an array of 27 wells was installed to measure subsurface temperatures underneath the riverbed over a 13-month period. The monitoring well locations were separated into areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from 5 depths within each of the 27 monitoring wells. Temperatures within the substrate at the spawning area were generally cooler and less variable than river temperatures. Substrate temperatures in the non-spawning area were generally warmer, more variable, and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated velocities in the spawning and non-spawning areas confirmed that groundwater velocities in the spawning area were primarily in the upward direction, and were generally greater in magnitude than velocities in the non-spawning area. In the non-spawning area there was a greater occurrence of velocities in the downward direction, and velocity estimates were generally lesser in magnitude than in the spawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater influx to the river bed.
Resumo:
The application of image-guided systems with or without support by surgical robots relies on the accuracy of the navigation process, including patient-to-image registration. The surgeon must carry out the procedure based on the information provided by the navigation system, usually without being able to verify its correctness beyond visual inspection. Misleading surrogate parameters such as the fiducial registration error are often used to describe the success of the registration process, while a lack of methods describing the effects of navigation errors, such as those caused by tracking or calibration, may prevent the application of image guidance in certain accuracy-critical interventions. During minimally invasive mastoidectomy for cochlear implantation, a direct tunnel is drilled from the outside of the mastoid to a target on the cochlea based on registration using landmarks solely on the surface of the skull. Using this methodology, it is impossible to detect if the drill is advancing in the correct direction and that injury of the facial nerve will be avoided. To overcome this problem, a tool localization method based on drilling process information is proposed. The algorithm estimates the pose of a robot-guided surgical tool during a drilling task based on the correlation of the observed axial drilling force and the heterogeneous bone density in the mastoid extracted from 3-D image data. We present here one possible implementation of this method tested on ten tunnels drilled into three human cadaver specimens where an average tool localization accuracy of 0.29 mm was observed.
Resumo:
ODP Site 1089 is optimally located in order to monitor the occurrence of maxima in Agulhas heat and salt spillage from the Indian to the Atlantic Ocean. Radiolarian-based paleotemperature transfer functions allowed to reconstruct the climatic history for the last 450 kyr at this location. A warm sea surface temperature anomaly during Marine Isotope Stage (MIS) 10 was recognized and traced to other oceanic records along the surface branch of the global thermohaline (THC) circulation system, and is particularly marked at locations where a strong interaction between oceanic and atmospheric overturning cells and fronts occurs. This anomaly is absent in the Vostok ice core deuterium, and in oceanic records from the Antarctic Zone. However, it is present in the deuterium excess record from the Vostok ice core, interpreted as reflecting the temperature at the moisture source site for the snow precipitated at Vostok Station. As atmospheric models predict a subtropical Indian source for such moisture, this provides the necessary teleconnection between East Antarctica and ODP Site 1089, as the subtropical Indian is also the source area of the Agulhas Current, the main climate agent at our study location. The presence of the MIS 10 anomaly in the delta13C foraminiferal records from the same core supports its connection to oceanic mechanisms, linking stronger Agulhas spillover intensity to increased productivity in the study area. We suggest, in analogy to modern oceanographic observations, this to be a consequence of a shallow nutricline, induced by eddy mixing and baroclinic tide generation, which are in turn connected to the flow geometry, and intensity, of the Agulhas Current as it flows past the Agulhas Bank. We interpret the intensified inflow of Agulhas Current to the South Atlantic as responding to the switch between lower and higher amplitude in the insolation forcing in the Agulhas Current source area. This would result in higher SSTs in the Cape Basin during the glacial MIS 10, due to the release into the South Atlantic of the heat previously accumulating in the subtropical and equatorial Indian and Pacific Ocean. If our explanation for the MIS 10 anomaly in terms of an insolation variability switch is correct, we might expect that a future Agulhas SSST anomaly event will further delay the onset of next glacial age. In fact, the insolation forcing conditions for the Holocene (the current interglacial) are very similar to those present during MIS 11 (the interglacial preceding MIS 10), as both periods are characterized by a low insolation variability for the Agulhas Current source area. Natural climatic variability will force the Earth system in the same direction as the anthropogenic global warming trend, and will thus lead to even warmer than expected global temperatures in the near future.