994 resultados para Essential Hypertension
Resumo:
The objective of the present study was to identify disturbances of nitric oxide radical (·NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg) and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg).Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM), urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM), ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.
Resumo:
BACKGROUND Pregnancy and arterial hypertension (AH) have a prohypertrophic effect on the heart. It is suspected that the 2 conditions combined cause disproportionate myocardial hypertrophy. We sought to evaluate myocardial hypertrophy (LVH) and left ventricular function in normotensive and hypertensive women in the presence or absence of pregnancy.METHODS This prospective cross-sectional study included 193 women divided into 4 groups: hypertensive pregnant (HTP; n = 57), normotensive pregnant (NTP; n = 47), hypertensive nonpregnant (HTNP; n = 41), and normotensive nonpregnant (NTNP; n = 48). After clinical and echocardiographic evaluation, the variables were analyzed using 2-way analysis of variance with pregnancy and hypertension as factors. Left ventricular mass (LVM) was compared using nonparametric analysis of variance and Dunn′s test. Predictors of LVH and diastolic dysfunction were analyzed using logistic regression (significance level, P < 0.05).RESULTS Myocardial hypertrophy was independently associated with hypertension (odds ratio (OR) = 11.1, 95% confidence interval (CI) = 3.2-38.5; P < 0.001) and pregnancy (OR = 6.1, 95% CI = 2.6-14.3; P < 0.001) in a model adjusted for age and body mass index. Nonpregnant women were at greater risk of LVH in the presence of AH (OR = 25.3, 95% CI = 3.15-203.5; P = 0.002). The risk was additionally increased in hypertensive women during pregnancy (OR = 4.3, 95% CI = 1.7-10.9; P = 0.002) in the model adjusted for stroke volume and antihypertensive medication. Although none of the NTNP women presented with diastolic dysfunction, it was observed in 2% of the NTP women, 29% of the HTNP women, and 42% of the HTP women (P < 0.05).CONCLUSIONS Hypertension and pregnancy have a synergistic effect on ventricular remodeling, which elevates a woman's risk of myocardial hypertrophy. © 2013 © American Journal of Hypertension, Ltd 2013. All rights reserved.
Resumo:
Hypertension is a common heritable cardiovascular risk factor. Some rare monogenic forms of hypertension have been described, but the majority of patients suffer from essential hypertension, for whom the underlying genetic mechanisms are not clear. Essential hypertension is a complex trait, involving multiple genes and environmental factors. Recently, progress in the identification of common genetic variants associated with essential hypertension has been made due to large-scale international collaborative projects. In this article we review the new research methods used as well as selected recent findings in this field.
Resumo:
Animal studies suggest that renal tissue hypoxia plays an important role in the development of renal damage in hypertension and renal diseases, yet human data were scarce due to the lack of noninvasive methods. Over the last decade, blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), detecting deoxyhemoglobin in hypoxic renal tissue, has become a powerful tool to assess kidney oxygenation noninvasively in humans. This paper provides an overview of BOLD-MRI studies performed in patients suffering from essential hypertension or chronic kidney disease (CKD). In line with animal studies, acute changes in cortical and medullary oxygenation have been observed after the administration of medication (furosemide, blockers of the renin-angiotensin system) or alterations in sodium intake in these patient groups, underlining the important role of renal sodium handling in kidney oxygenation. In contrast, no BOLD-MRI studies have convincingly demonstrated that renal oxygenation is chronically reduced in essential hypertension or in CKD or chronically altered after long-term medication intake. More studies are required to clarify this discrepancy and to further unravel the role of renal oxygenation in the development and progression of essential hypertension and CKD in humans.
Resumo:
Despite enormous research in the field of hypertension, its pathophysiology still remains largely unresolved and appears to be multifactorial. In the present communication, we have analyzed the status of nitric oxide (NO) in the patients with essential hypertension and age matched controls. We have found that the levels of NO are lowered in essential hypertension. The normalization of blood pressure by administration of antihypertensive therapy causes rise in the NO level indicating that perturbed NO status in essential hypertension is reversible. Addition of antioxidant to the antihypertensive drugs causes a further, though non significant, rise in the levels of NO, suggesting that antioxidants may be combined with antihypertensive drugs as adjunct in the management of essential hypertension.
Resumo:
OBJECTIVE Hypertension and an atherogenic lipid profile are known risk factors for coronary heart disease (CHD). Hypertensives show greater changes in atherogenic plasma lipids to acute stress than normotensives. In this study, we investigated whether attribution of failure is associated with lipid stress reactivity in hypertensive compared with normotensive men. METHODS 18 normotensive and 17 hypertensive men (mean±SEM; 45±2.2 years) underwent an acute standardized psychosocial stress task that can be viewed as a situation of experimentally induced failure. We assessed external-stable (ES), external-variable (EV), internal-stable (IS), and internal-variable (IV) attribution of failure and psychological control variables (i.e. extent of depression and neuroticism). Moreover, total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C), and norepinephrine were measured immediately before and several times after stress. RESULTS ES moderated TC- and LDL-C-stress reactivity in hypertensives as compared to normotensives (interaction mean arterial pressure [MAP]-by-ES for TC: F=3.71, p=.015; for LDL-C: F=3.61, p=.016). TC and LDL-C levels were highest in hypertensives with low ES immediately after stress (p≤.039). In contrast, hypertensives with high ES did not differ from normotensives in TC and LDL-C immediately after stress (p's>.28). Controlling for norepinephrine, depression, and neuroticism in addition to age and BMI did not significantly change results. There were no significant associations between lipid baseline levels or aggregated lipid secretion and IS, IV, or EV (p's>.23). CONCLUSION Our data suggest that ES may independently protect from elevated lipid stress reactivity in hypertensive individuals. ES thus might be a protective factor against CHD in hypertension.
Resumo:
Gene targeting allows precise, predetermined changes to be made in a chosen gene in the mouse genome. To date, targeting has been used most often for generation of animals completely lacking the product of a gene of interest. The resulting "knockout" mice have confirmed some hypotheses, have upset others, but have rarely been uninformative. Models of several human genetic diseases have been produced by targeting--including Gaucher disease, cystic fibrosis, and the fragile X syndrome. These diseases are primarily determined by defects in single genes, and their modes of inheritance are well understood. When the disease under study has a complex etiology with multiple genetic and environmental components, the generation of animal models becomes more difficult but no less valuable. The problems associated with dissecting out the individual genetic factors also increases substantially and the distinction between causation and correlation is often difficult. To prove causation in a complex system requires rigorous adherence to the principle that the experiments must allow detection of the effects of changing only a single variable at one time. Gene targeting experiments, when properly designed, can test the effects of a precise genetic change completely free from the effects of differences in any other genes (linked or unlinked to the test gene). They therefore allow proofs of causation.
Resumo:
Bibliography: p.234-245.
Resumo:
Essential hypertension is a very heterogeneous disease. The availability of antihypertensive drugs lowering blood pressure by various mechanisms allows most often to tailor the treatment, i.e. to find for each patient a drug regimen that is both efficient and well tolerated. Frequently medications given as monotherapy are not effective enough so that the use of drug combinations is required. When combined, low doses of antihypertensive agents are generally sufficient, so that tolerability is optimally preserved. Unfortunately many patients do not have their blood pressure controlled during antihypertensive therapy. These patients therefore do not benefit maximally from the cardiovascular protection afforded by blood pressure lowering. It is also imperative to correct all cardiovascular risk factors in each hypertensive patient. Such a multifactorial approach is known to improve effectively the prevention of cardiovascular diseases.
Resumo:
Adipokines are hormones produced by adipocytes and have been involved in multiple pathologic pathways, including inflammatory and cardiovascular complications in essential hypertension. Arterial stiffness is a frequent vascular complication that represents increased cardiovascular risk in hypertensive patients. Adipokines, such as adiponectin, leptin and resistin, might be implicated in hypertension, as well as in vascular alterations associated with this condition. Arterial stiffness has proven to be a predictor of cardiovascular events. Obesity and target-organ damage such as arterial stiffness are features associated with hypertension. This review aims to update the association between adipokines and arterial stiffness in essential and resistant hypertension (RHTN).
Resumo:
Background: A combination of antihypertensive agents of different drug classes in a fixed-dose combination (FDC) may offer advantages in terms of efficacy, tolerability, and treatment compliance. Combination of a calcium channel blocker with an angiotensin-converting enzyme inhibitor may act synergistically to reduce blood pressure (BP). Objective: The aim of this study was to compare the efficacy and tolerability of an amlodipine/ramipril FDC with those of amlodipine monotherapy. Methods: This 18-week, prospective, randomized, double-blind study was conducted at 8 centers across Brazil. Patients with stage 1 or 2 essential hypertension were enrolled. After a 2-week placebo run-in phase, patients received amlodipine/ramipril 2.5/2.5 mg or amlodipine 2.5 mg, after which the doses were titrated, based on BP, to 515 then 10/10 mg (amlodipme/ramipril) and 5 then 10 mg (amiodipine). The primary end point was BP measured in the intent-to-treat (ITT) population. Hematology and serum biochemistry were assessed at baseline and study end. Tolerability was assessed using patient interview, laboratory analysis, and physical examination, including measurement of ankle circumference to assess peripheral edema. Results: A total of 222 patients completed the study (age range, 40-79 years; FDC group, 117 patients [mean dose, 7.60/7.60 mg]; monotherapy, 105 patients [mean dose, 7.97 mg]). The mean (SD) changes in systolic BP (SBP) and diastolic BP (DBP), as measured using 24-hour ambulatory blood pressure monitoring (ABPM) and in the physician`s office, were significantly greater with combination therapy than monotherapy, with the exception of office DBP (ABPM, -20.76 [1.25] vs -15.80 [1.18] mm Hg and -11.71 [0.78] vs -8.61 [0.74] mm Hg, respectively [both, P = 0.004]; office, -27.51 [1.40] vs -22.84 [1.33] min Hg [P = 0.012] and -16.41 [0.79] vs -14.64 [0.75] mm Hg [P = NS], respectively). In the ITT analysis, the mean changes in ambulatory, but not office-based, BP were statistically significant (ABPM: SBP, -20.21 [1.14] vs -15.31 [1.12] mm Hg and DBP, -11.61 [0.72] vs -8.42 [0.70] mm Hg, respectively [both, P = 0.002]; office: SBP, -26.60 [1.34] vs -22.97 [1.30] mm Hg and DBP, -16.48 [0.78] vs -14.48 [0.75] mm Hg [both, P = NS]). Twenty-nine patients (22.1%) treated with combination therapy and 41 patients (30.6%) treated with monotherapy experienced >= 1 adverse event considered possibly related to study drug. The combmation-therapy group had lower prevalence of edema (7.6% vs 18.7%; P = 0.011) and a similar prevalence of dry cough (3.8% vs 0.8%; P = NS). No clinically significant changes in laboratory values were found in either group. Conclusions: In this population of patients with essential hypertension, the amlodipine/ramipril FDC was associated with significantly reduced ambulatory and office-measured BP compared with amlodipine monotherapy, with the exception of office DBP. Both treatments were well tolerated. (Clin Ther. 2008;30: 1618-1628) (C) 2008 Excerpta Medica Inc.
Resumo:
Objectives The present study investigates the hemodynamic and autonomic regulation during sleep-awake transitions and across different sleep cycles in patients with essential hypertension. Methods Nineteen individuals free of sleep apnea (10 normotensive and nine hypertensive matched for age, sex, and body mass index) underwent a standard polysomnography, with simultaneous electrocardiography and beat-to-beat blood pressure monitoring (Portapres). All measurements were determined while awake (before and after sleep), as well as in the beginning and at end of the sleep cycle (first/last cycle of nonrapid and rapid eye movement stages). Results Systolic blood pressure was higher in hypertensives and exhibited a similar reduction to the normotensives ones in initial nonrapid eye movement sleep. This reduction was because of different mechanisms: a significant fall in cardiac output in normotensives, whereas in hypertensives was also dependent of a decrease in peripheral vascular resistance. Hypertensive patients presented lower heart rate variation and attenuated baroreflex sensitivity during sleep but not immediately before and after sleep. Spectral analysis suggested a higher sympathetic activity in the sleep stages in hypertension. Additionally, a progressive sympathetic predominance (final rapid eye movement> initial rapid eye movement and awake period postsleep> awake period presleep) was observed in both groups. Conclusion Hypertension is associated with depressed baroreflex sensitivity and increased sympathetic activation during sleep. The greater sympathetic predominance at the end of night (preceding the morning surge of sympathetic activity) could be implicated in the occurrence of cardiovascular events. J Hypertens 27: 1655-1663 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
BACKGROUND AND PURPOSE: A single bout of aerobic exercise acutely decreases blood pressure, even in older adults with hypertension. Nonetheless, blood pressure responses to aerobic exercise in very old adults with hypertension have not yet been documented. Therefore, this study aimed to assess the effect of a single session of aerobic exercise on postexercise blood pressure in very old adults with hypertension. METHODS: Eighteen older adults with essential hypertension were randomized into exercise (N = 9, age: 83.4 ± 3.2 years old) or control (N = 9, age: 82.7 ± 2.5 years old) groups. The exercise group performed a session of aerobic exercise constituting 2 periods of 10 minutes of walking at an intensity of 40% to 60% of the heart rate reserve. The control group rested for the same period of time. Anthropometric variables and medication status were evaluated at baseline. Heart rate and systolic and diastolic blood pressures were measured at baseline, after exercise, and at 20 and 40 minutes postexercise. RESULTS: Systolic blood pressure showed a significant interaction for group × time (F3,24 = 6.698; P = .002; ηp = 0.153). In the exercise group, the systolic blood pressure at 20 (127.3 ± 20.9 mm Hg) and 40 minutes (123.7 ± 21.0 mm Hg) postexercise was significantly lower in comparison with baseline (135.6 ± 20.6 mm Hg). Diastolic blood pressure did not change. Heart rate was significantly higher after the exercise session. In the control group, no significant differences were observed. CONCLUSIONS: A single session of aerobic exercise acutely reduces blood pressure in very old adults with hypertension and may be considered an important nonpharmacological strategy to control hypertension in this age group.