1000 resultados para Espectrofotometria de absorção atômica
Resumo:
A fast and direct method for the determination of Cr in milk and cane sugar suspensions using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction is described. No sample pre-treatment was necessary, minimizing the risk of contamination. The concentration of chromium in cane sugar was evaluated using Cr reference solutions prepared in 1% v/v HNO3 solution. The milk samples were introduced into the furnace with a mixture of amines for avoiding the autosampler blockage and foaming of milk. Chromium determination in milk was based on the standard additions method (SAM). The limit of detection and characteristic mass for cane sugar sample (30 muL) were 0,13 ng/ml and 4,3 pg, and for milk sample (10 muL) were 0,23 ng/ml and 7,8 pg, respectively. The graphite tube lifetime was 300 firings for sugar-cane sample and 100 firings for milk sample. The heating program was implemented in 68 s.
Resumo:
Selenium is both essential and toxic to man and animals, depending on the concentration and the ingested form. Most fruits and vegetables are poor sources of selenium, but coconut can be a good selenium source. Samples were suspended (1 + 4 v/v) in a mixture of tertiary amines soluble in water (10% v/v CFA-C). This simple sample treatment avoided contamination and decreased the analysis time. The standard additions method was adopted for quantification. The action of the autosampler was improved by the presence of the amines mixture in the suspension. A Varian model AA-800 atomic absorption spectrometer equipped with a graphite furnace and a GTA 100 autosampler was used for selenium determination in coconut water and coconut milk. Background correction was performed by means of the Zeeman effect. Pyrolytically coated graphite tubes were employed. Using Pd as chemical modifier, the pyrolysis and the atomization temperatures were set at 1400 and 2200ºC, respectively. For six samples, the selenium concentration in coconut water varied from 6.5 to 21.0 mug L-1 and in coconut milk from 24.2 to 25.1 mug L-1. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values are in the 99.5-102.3% range. The main advantage of the proposed method is that it can be directly applied without sample decomposition.
Resumo:
A tungsten coil atomizer was used to investigate the effect of heating programs with constant or variable drying temperatures on the atomization of Al, Cd, Cr and Pb. The variation of the surface temperature in the tungsten coil furnace can occur during each heating step due to the design of the power supply, that may apply constant voltages during a programmed time. For volatile elements (Cd), losses in sensitivity were observed when the program with a variable temperature was used. On the other hand, these effects are negligible for less volatile elements (Al and Cr) and any tested program, in different acidic media, could be used without appreciable changes in sensitivities. The results allow the establishment of proper heating programs for elements with different thermochemical behavior in the tungsten coil atomizer.
Resumo:
This review presents an updated overview of the trace element speciation by gas chromatography coupled with atomic absorption spectrometry.
Resumo:
A flow cell assembled on the original geometry of a graphite tube to achieve permanent chemical modifier is proposed. The graphite tube operates as the working electrode. A stainless steel tube, positioned downstream from the working electrode, was used as the auxiliary electrode. The potential value applied on the graphite electrode was measured against a micro reference electrode (Ag/AgCl) inserted into the auxiliary electrode. Palladium solutions in acetate buffer (100 mmol L-1, pH = 4.8), flowing at 0.5 mL min-1 for 60 min was used to perform the electrochemical modification. A mercury solution (1 ng) was used to evaluate the performance of the permanent palladium modifier.
Resumo:
In order to demonstrate the feasibility of slurry sampling for environmental studies, different methodologies were developed for Cu and Zn in antarctic limpets and Ni in river sediment with FAAS detection. Studies focusing particle size, acid concentration, slurry stability, selectivity, among others were carried out in order to define the better conditions for slurry analysis. A study related to the depth profile for Ni in the Atibaia River sediment was made after optimization conditions for this element. For accuracy check, certified reference material was used as well as decomposition with microwave oven.
Resumo:
In this review it is presented some aspects of electrothermal atomic absorption spectrometry with tungsten coil (ETAW-AAS) since its beginning until the present days as well as the perspectives for this technique. Some aspects concerning its development and theoretical concepts are discussed. The analytical figures of merit such as limit of detection (LD), characteristic mass (m0), relative standard deviation (RSD), accuracy and precision are evaluated, compared and discussed considering published works. It is also evaluated its advantages, applications, limitations and instrumental development. The use of diode laser as radiation source and its perspectives to ETAW are also discussed.
Resumo:
A method for determination of lead and cadmium in aqueous samples using solvent microextraction and dithizone as complexing agent with FAAS was developed. Solvent microextraction parameters were optimized. The effect of foreign ions on the extraction yields was studied. The extraction was carried out until the aqueous to organic phase ratio achieved a 250 fold preconcentration of metals. For preconcentration times of 4 min the 3sigma detection limits, relative standard deviations (n=7) and linear calibration ranges were 1.6 mug L-1, 5.8% and 10.0 -- 80.0 mug L-1 for lead and 11.1 ng L-1, 5.9% and 0.3 -- 3.0 mug L-1 for cadmium, respectively. The solvent microextraction procedure presented here was applied to the determination of lead and cadmium in natural waters.
Resumo:
This paper describes a review on internal standardization in atomic absorption spectrometry with emphasis to the systematic and random errors in atomic absorption spectrometry and applications of internal standardization in flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry. The rules for selecting an element as internal standard, limitations of the method, and some comments about the application of internal standardization in atomic absorption spectrometry and the future of this compensation strategy are critically discussed.
Resumo:
The toxicity of the major As species present in the environment justifies the effort for quantifying the element in environmental organic samples, which can vary from animal and vegetal tissues to coal and industrial residues. This paper comments about the applicability of the O2 bomb digestion, as a general procedure for all environmental organic materials. A rapid and straightforward method is suggested, which consists in burning the sample in the bomb at high O2 pressure, dissolving the vapours in diluted HNO3 and determining As in the resulting solution by atomic absorption spectrometry with electrothermal atomization. The method was applied to certified materials and plant samples.
Resumo:
A tubular electrochemical flow-cell for iridium deposition on the inner surface of pyrolytic graphite tube for permanent chemical modification is proposed. A transversal heated graphite tube was used as working electrode, a cylindrical piece of graphite inserted into the graphite tube as auxiliary electrode, and a micro Ag/AgCl(sat) as reference electrode. Iridium solution in 1.0 mol L-1 HCl, flowing at 0.55 mL min-1 for 60 min was used to perform the electrochemical modification. The applied potential to the flow-cell was - 0.700 V vs Ag/AgCl. Scanning electron microscopy images were taken for thermal and electrochemical modified graphite surface in order to evaluate the iridium distribution. Selenium hydride trapping was used to verify the performance of the proposed permanent chemical modifier.
Resumo:
The use of an internal standard (IS) in ET AAS can be considered a new trend after the commercial introduction of a simultaneous spectrometer. The evaluation of experimental data to choose the most appropriate IS can be done by comparing correlation graphs. They were used to verify the resemblance among the simultaneous measurements obtained for the analyte(s) and the IS by inductively coupled plasma optical emission spectrometry (ICPOES). The judicious selection of IS by using correlation graphs for determinations by ET AAS can be exploited to improve the precision and accuracy of the analytical results. Therefore, a new approach for studying the use of IS in ET AAS is presented.
Resumo:
This work describes a systematic study for bovine liver sample preparation for Cd and Pb determination by solid sampling electrothermal atomic absorption spectrometry. Samples were prepared using different procedures: (1) drying in a household microwave oven followed by drying in a stove at 60 ºC until constant mass, and (2) freeze-drying. Ball and cryogenic mills were used for grinding. Particle size, sample size and micro sample homogeneity were investigated. All prepared samples showed good homogeneity (He < 10) even for low sample mass, but samples dried in a microwave oven/stove and ground in a ball mill presented the best homogeneity.
Resumo:
Simple experiments are proposed for measuring molecular absorption of chromate and dichromate ions using an atomic absorption spectrometer. The experiments can help undergraduate students in instrumental analysis courses understand important aspects involving conceptual and instrumental similarities and differences between frequently used analytical techniques. Hollow cathode lamps were selected with wavelengths in the region of molecular absorption of chromate and dichromate. Calibration curves were obtained and the linear dynamic range was evaluated. Results were compared with those obtained in a molecular absorption spectrometer. The molar absorptivities obtained were also compared.
Resumo:
This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.