235 resultados para ErbiumYtterbium codoped
Resumo:
For the Er3+/Yb3+ codoped fluorophosphate glasses, Judd-Ofelt theory is used to analyse the influence of YbF3 as not a sensitizer but an average component on the spectroscopic properties around 1530 nm emission. The double roles of Yb3+, as a sensitizer and as an average component, are discussed. It is found that Yb3+ as an average component contributes to the increase of fluorescence lifetime, and Yb3+ as a sensitizer has the best sensitization when its concentration is 2.4 mol%.
Resumo:
A novel Vb(3+)-Er-(3+) codoped phosphate glass for high power flashlamp pumping and high repetition rate laser at 1.54 mu m, designated EAT5-2, is developed. The weight-loss rate of is 1.3 x 10(-5) gcm(-2) h(-1) in boiling water, which is comparable to Kigre's QX-Er glass. Some spectroscopic parameters are analysed by Judd-Ofelt theory and McCumber theory The emission cross section is calculated to be 0.73 x 10(-20) cm(2). The thermo-mechanical properties of EAT5-2 are modified after an ion-exchange chemical strengthening process in a KNO3/NaNO3 molten salt bath. The thresholds for optical damage from the flashlamp pumping are tested on glass rods. A repetition rate of 15 Hz is achieved for chemically strengthened glass. The laser experimental results at. 1.54 mu m from flashlamp pumping are also reported.
Resumo:
We investigate the broadband infrared emission of bismuth doped and bismuth/dysprosium codoped chalcohalide glasses. It is found that the bismuth/dysprosium codoping can drastically enhance the fluorescence as compared with either bismuth or dysprosium doped glasses. Meanwhile, the full width at half maximum of bismuth/dysprosium codoped glasses is over 170 nm, which is the largest value among all the reported rare-earth doped chalcohalide glasses. An ideal way for energy consumption between bismuth and dysprosium ions is supposed. Such improved gain spectra of both bismuth and dysprosium ions may have potential applications in developing broadband fibre amplifiers.
Resumo:
Er3+:Yb3+ codoped tellurite-fluorophosphate (TFP) glass ceramic exhibits much stronger upconversion luminescence. The intensity of the 540 nm green light and 651 nm red light of the TFP glass ceramic is 120 times and 44 times stronger than that of the fluorophospahte (FP) glass, respectively. XRD analysis shows that the nanocrystal in TFP glass ceramic is SrTe5O11. TFP glass ceramic also displays much higher upconversion fluorescence lifetime and crystallization stability. The narrow and strong peak at 540 nm is very ideal for practical upconversion luminescence realization. This work is a new trial for exploring non-PbF2 involved nanocrystal upconversion glass ceramics.
Resumo:
Er3+/Yb3+ cocloped fluorophosphate glasses were prepared and their thermal stabilities, Raman spectra, absorption spectra, and fluorescence spectra were measured. It is found that proper content of NaF or PbF2 is helpful for the increase of stability against crystallization. The variation of AI(PO3)3 or NaF content in the composition affects not the maximum phonon energy but the phonon density. The introduction of PbF2 decreases the phonon energy slightly. Intense green and red upconversion luminescence was observed for the fluorophosphate glass with low phosphate content. A glass matrix for upconversion luminescence requiring neither expensive raw material nor special atmospheric conditioned preparation is provided. Infrared luminescence around 1530 nm was researched. Fluorophosphate glasses with bandwidth properties and stimulated-emission cross sections better than tellurite, germanate and silicate glasses are obtained. Through the introduction of NaF, the bandwidth properties are decreased. Through the introduction of PbF2 the gain properties are increased. On the whole, it is difficult to obtain a material with the best gain properties and bandwidth properties simultaneously. There should be a compromise between them according to the demand. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Er3+, Yb3+ and Tm3+ codoped fluorophosphate glasses emitting blue, green and red upconversion luminescence at 970 nm laser diode excitation were studied. It was shown that Tm3+ behaves as the sensitizer to Er3+ for the green upconversion luminescence through the energy transfer process: Tm 3+:H-3(4) + Er3+:I-4(15/2) -> Er3+:I-4(9/2) + Tm3+:H-3(6), and for the red upconversion luminescence through the energy transfer process: Tm3+:F-3(4) + Er3+:I-4(11/2) -> TM3+:H-3(6) + Er3+:4 F-9/2. Moreover, Er3+ acts as quenching center for the blue upconversion luminescence of TM3+. The sensitization of Tm3+ to Er3+ depends on the concentration of Yb3+. The intensity of blue, green and red emissions can be changed by adjusting the concentrations of the three kinds of rare earth ions. This research may provide useful information for the development of high color and spatial resolution devices and white light simulation. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Er3+-doped halide modified tellurite glasses were synthesized by conventional melting and quenching method. The Judd-Ofelt analysis was performed on the absorption spectra and the transition probabilities, excited state lifetimes, and the branching ratios were calculated and discussed. The intense infrared and visible fluorescence spectra under 980 nm excitation were obtained. Strong upconversion signal was observed at pumping power as low as 30 mW in the glasses with halide ions. The upconversion mechanisms and power dependent intensities were discussed, which showed two-photon process are involved for the green and red emissions. The decay times of the emitting states and the corresponding quantum efficiency were determined and explained. (C) 2004 American Institute of Physics.
Resumo:
Yb3+/Tm3+-codoped oxychloride germanate glasses for developing potential upconversion lasers have been fabricated and characterized. Structural properties were obtained based on the Raman spectra analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energies of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of blue (477 nm) emission increases significantly, while the red (650 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the blue emissions than the red emission in oxychloride germanate glasses. The possible upconversion mechanisms are discussed and estimated. Intense blue upconversion luminescence indicates that these oxychloride germanate glasses can be used as potential host material for upconversion lasers. C (c) 2005 Springer Science + Business Media, Inc.
Resumo:
For the first time. effect of halide ions (F-, Cl-, Br-, and I-) introduction on structure, thermal stability, and upconversion fluorescence in Er3+/Yb3+-codoped oxide-halide germanium-bismuth glasses has been systematically investigated. The results show that halide ions modified germanium-bismuth glasses have lower maximum phonon energy and phonon density, worse thermal stability. longer measured lifetimes of I-4(l1/2) level, and stronger upconversion emission than germanium-bismuth glass. All these results indicate that halide ions play an important role in the formation of glass network, and have an important influence on the upconversion luminescence. The possible upconversion mechanisms of Er3+ ion are also evaluated. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
We report on the energy transfer and frequency upconversion spectroscopic properties of Er3+-doped and Er3+/Yb3+-codoped TeO2-ZnO-Na2O-PbCl2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 4 10 nm have clearly been observed for the Er3+/Yb3+-codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The upconversion luminescence properties of Yb3+/Tm3+-codoped oxyfluoride tellurite glasses under 980 nm excitation are investigated experimentally. The intense blue and relatively weak red emissions centered at 475 and 649 nm corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4) of Tm3+, respectively, are simultaneously observed at room temperature. The effect of PbF2 on upconversion intensity is observed and discussed, and possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Yb3+/Tm3+-codoped oxyfluoride tellurite glasses may be a potentially useful material for developing blue upconversion optical devices. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thermal stability, Raman spectra and blue upconversion luminescence properties of Tm-3divided by /Yb-3divided by -codoped halide modified tellurite glasses have been Studied. The results showed that the mixed halide modified tellurite glass (TFCB) has the best thermal stability, the lowest phonon energies and the strongest upconversion emissions. The effect of halide on upconversion intensity is observed and discussed and possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tin (3+) in TFCB Glass may be a potentially useful material for developing upconversion optical devices.. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Blue, green and red emissions through frequency upconversion and energy transfer processes in Tm3+/Er3+/Yb3+-codoped oxyhalide tellurite glass under 980 nm excitation are investigated. The intense blue (476 nm), green (530 and 545 nm) and red (656 nm) emissions are simultaneously observed at room temperature. The blue (476 nm) emission was originated from the (1)G(4)->H-3(6) transition of Tm3+. The green (530 and 545 nm), and red (656 nm) upconversion luminescences were identified from the H-2(11/2)->I-4(15/2), S-4(3/2)->I-4(15/2), and F-4(9/2)->I-4(15/2) transitions of Er3+, respectively. The energy transfer processes and possible upconversion mechanisms are evaluated. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The thermal stability, Raman spectrum and upconversion properties of Tm^(3+)/Yb^(3+) co-doped new oxyfluoride tellurite glass are investigated. The results show that Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass possesses good thermal stability, lower phonon energy, and intense upconversion blue luminescence. Under 980-nm laser diode (LD) excitation, the intense blue (475 nm) emission and weak red (649 nm) emission corresponding to the 1G4 -> 3H6 and 1G4 -> 3F4 transitions of Tm^(3+) ions respectively, were simultaneously observed at room temperature. The possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass can be used as potential host material for the development of blue upconversion optical devices.