990 resultados para Er:Yb:glass
Resumo:
To study the effects of upconversion in Erbium, a set of rate equations that simulates the performance of the passively Q-switched Er:Yb:glass laser with a Co2+:MgAl
Resumo:
Gd2SiO5 (GSO) single crystal codoped with Yb3+ and Er3+ (Abbr. as Er:Yb:GSO) was successfully grown by the Czochralski (CZ) method for the first time and the spectral characteristics were investigated. The absorption and fluorescence spectra were measured. The emission lifetime of the I-4(13/2)-Er-level was measured to be 5.84ms and the emission cross-section at 1529nm was calculated to be 1.03 x 10(-20) cm(2). The results indicate that Er:Yb:GSO is a potential laser material at similar to 1. 55 mu m wavelength region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A series of novel, colorless, and transparent sot-gel derived hybrid materials Ln-DBM-Si covalently grafted with Ln(DBM-OH)(3)center dot 2H(2)O (where DBM-OH = o-hydroxydibenzoylmethane, Ln = Nd, Er, Yb, and Sin) were prepared through the primary beta-diketone ligand DBM-OH. The structures and optical properties of Ln-DBM-Si were studied in detail. The investigation results revealed that the lanthanide complexes were successfully in situ grafted into the corresponding hybrids Ln-DBM-Si. Upon excitation at the maximum absorption of ligands, the resultant materials displayed excellent near-infrared luminescence.
Resumo:
New near-infrared-luminescent mesoporous materials were prepared by linking ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complexes to the ordered mesoporous MCM-41 through a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline. The resulting materials (denoted as Ln(hfth)(3)phen-M41 and Pr(tfnb)(3)phen-M41; Ln=Er, Yb, Nd, Sm; hfth = 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dionate; tfnb = 4,4,4-trifluoro-1-(2-naphthyl)- 1, 3-butanedionate) were characterized by powder X-ray diffraction, N-2 adsorption/desorption, and elemental analysis. Luminescence spectra of these lanthanide-complex functionalized materials were recorded, and the luminescence decay times were measured. Upon excitation at the absorption of the organic ligands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) ions by sensitization from the organic ligands moiety. The good luminescent performances enable these NIR-luminescent mesoporous materials to have possible applications in optical amplification (operating at 1300 or 1500 nm), laser systems, or medical diagnostics.
Resumo:
光子晶体光纤的出现,为高功率光纤激光器的关键技术-大模区光纤的实现提供了新途径。基于铒镱共掺磷酸盐材料的包层掺杂新结构出现,为实现更加紧凑的光纤激光器提供了可能。常规高功率光纤激光器中的抽运技术,谐振腔技术和相干组束技术也在不断融入高功率光子晶体光纤激光器。高功率光子晶体光纤激光器的调Q和锁模输出也已经实现。
Resumo:
The authors demonstrate a 1.5 mu m wavelength microfiber laser formed by tightening a doped microfiber into a knot in air. The 2-mm-diameter knot, assembled using a 3.8-mu m-diameter microfiber that is directly drawn from Er:Yb-doped phosphate glass, serves as both active medium and resonating cavity for lasing. Single-longitudinal-mode laser with threshold of about 5 mW and output power higher than 8 mu W is obtained. Their initial results suggest a simple approach to highly compact lasers based on doped microscale optical fibers. (c) 2006 American Institute of Physics.
Resumo:
In this thesis, the evanescent field sensing techniques of tapered optical nanofibres and microspherical resonators are investigated. This includes evanescent field spectroscopy of a silica nanofibre in a rubidium vapour; thermo-optical tuning of Er:Yb co-doped phosphate glass microspheres; optomechanical properties of microspherical pendulums; and the fabrication and characterisation of borosilicate microbubble resonators. Doppler-broadened and sub-Doppler absorption spectroscopic techniques are performed around the D2 transition (780.24 nm) of rubidium using the evanescent field produced at the waist of a tapered nanofibre with input probe powers as low as 55 nW. Doppler-broadened Zeeman shifts and a preliminary dichroic atomic vapour laser lock (DAVLL) line shape are also observed via the nanofibre waist with an applied magnetic field of 60 G. This device has the potential for laser frequency stabilisation while also studying the effects of atom-surface interactions. A non-invasive thermo-optical tuning technique of Er:Yb co-doped microspheres to specific arbitrary wavelengths is demonstrated particularly to 1294 nm and the 5S1/2F=3 to 5P3/2Fʹ=4 laser cooling transition of 85Rb. Reversible tuning ranges of up to 474 GHz and on resonance cavity timescales on the order of 100 s are reported. This procedure has prospective applications for sensing a variety of atomic or molecular species in a cavity quantum electrodynamics (QED) experiments. The mechanical characteristics of a silica microsphere pendulum with a relatively low spring constant of 10-4 Nm-1 are explored. A novel method of frequency sweeping the motion of the pendulum to determine its natural resonance frequencies while overriding its sensitivity to environmental noise is proposed. An estimated force of 0.25 N is required to actuate the pendulum by a displacement of (1-2) μm. It is suggested that this is of sufficient magnitude to be experienced between two evanescently coupled microspheres (photonic molecule) and enable spatial trapping of the micropendulum. Finally, single-input borosilicate microbubble resonators with diameters <100 μm are fabricated using a CO2 laser. Optical whispering gallery mode spectra are observed via evanescent coupling with a tapered fibre. A red-shift of (4-22) GHz of the resonance modes is detected when the hollow cavity was filled with nano-filtered water. A polarisation conversion effect, with an efficiency of 10%, is observed when the diameter of the coupling tapered fibre waist is varied. This effect is also achieved by simply varying the polarisation of the input light in the tapered fibre where the efficiency is optimised to 92%. Thus, the microbubble device acts as a reversible band-pass to band-stop optical filter for cavity-QED, integrated solid-state and semiconductor circuit applications.
Resumo:
The solubility and uniform distribution of lanthanide complexes in sol-get glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide beta-diketonate complexes (Ln = Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(Ill) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report a two-stage diode-pumped Er-doped fiber amplifier operating at the wavelength of 1550 nm at the repetition rate of 10-100 kHz with an average output power of up to 10 W. The first stage comprising Er-doped fiber was core-pumped at the wavelength of 1480 nm, whereas the second stage comprising double-clad Er/Yb-doped fiber was clad-pumped at the wavelength of 975 nm. The estimated peak power for the 0.4-nm full-width at half-maximum laser emission at the wavelength of 1550 nm exceeded 4-kW level. The initial 100-ns seed diode laser pulse was compressed to 3.5 ns as a result of the 34-dB total amplification. The observed 30-fold efficient pulse compression reveals a promising new nonlinear optical technique for the generation of high power short pulses for applications in eye-safe ranging and micromachining.
Resumo:
New complexes of lanthanide nitrates with N, N-diethylantipyrine-4-carboxamide (DEAP), with the general formulae [Ln2(DEAP)3] [NO3]6 (where Ln = La, Pr, Nd, Sm, Tb, Ho, Er, Yb and Y) have been isolated and characterized by chemical analysis and various physical methods such as electrolytic conductance, IR and13C NMR spectral data. Electrolytic conductance values and infrared spectral studies indicate that the nitrate groups are coordinated. Infrared and13C NMR spectral analysis show that the ligand DEAP is coordinated to the tripositive metal ion through the diethylcarboxamide carbonyl and antipyrine carbonyl oxygens in a bidentate fashion.
Resumo:
A novel design approach to ultra-narrow transmission-band fiber Bragg grating (FBG) is proposed and demonstrated for the first time. The new grating consists of multiple identical distributed-Bragg reflector (DBR) cavities and a it-phase-shifted gap, and hence, the proposed laser is constructed by the cascade of these identical DBR fiber lasers. By manufacturing the proposed grating in a piece of Er-Yb codoped fiber, a single-wavelength single-longitudinal-mode (SLM) fiber laser with improved efficiency is demonstrated experimentally. The experimental results show that the pump-to-signal conversion efficiency of the proposed laser is improved by a factor of two in comparison with the optimized distributed-feedback (DFB) fiber lasers. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A novel grating structure is proposed and demonstrated to obtain stable dual-wavelength (DW) distributed-feedback (DFB) fiber lasers at room temperature. The proposed grating is based on a symmetrical structure, where one half is periodically sampled by "0"-to-"pi" period and the other half is done by "pi"-to-"0" period. This structure can create two separated resonance cavities and hence achieve the stable DW lasing operation. By fabricating the proposed grating on a piece of Er: Yb-codoped fiber, we experimentally obtain a stable DW-DFB fiber laser with wavelength spacing of similar to 440 pm at room temperature.
Resumo:
We present a novel high-energy, single-mode, all-fiber-based master-oscillator-power-amplifier (MOPA) laser system operating in the C-band with 3.3-ns pulses and a very widely tunable repetition rate, ranging from 30 kHz to 50 MHz. The laser with a maximum pulse energy of 25 mu J and a repetition rate of 30 kHz is obtained at, a wavelength of 1548 nm by using a double-clad, single-mode, Er:Yb co-doped fiber power amplifier.
Resumo:
制备了掺Er¨ 和Er¨/Yb¨共掺的可用于EDWA(掺铒波导放大器)的Na20.B,0 .SiO, 玻璃.吸收光谱特性表明:不同掺杂Er20 浓度基础玻璃峰位置基本相同,但玻璃在相同波长处的 吸收率随着Er203浓度的增加而增大;光敏剂Yb 0 的加入明显增大了样品在978 nm处的吸收面 积;荧光光谱特性表明:随着Er O 浓度的增加玻璃在1536 nm处的荧光半高宽(FWHM)由80 nm 减小到40 nm,从而确定本体系的Er20 掺杂浓度为0.2 mo1% 左右较好.
Resumo:
随着萃取技术的不断发展,人们日益要求更加深入的了解萃取过程的机制及其动力学特性。以便有效地控制和强化萃取过程,提高萃取效率,或者利用萃取动力学的差异来实现某些分离嘴过程。尽管许多萃取过程进行得很快,但是人们也发现不少的金属鳌合物萃取体系,其萃取过程相当缓慢。因而这类体系的萃取机制和萃取动力学问题已日益引人注目。除此而外,在设计,放大或改进萃取设备时,研究和掌握有关萃取过程的动力学规律也有十分重要意义。在本文中主要对稀土萃取动力学进行了研究,得到主要结果如下:1.研究了硫代有机磷酸Cyan.ex302萃取饵的动力学。通过测定各种萃取条件对萃取速率的影响,获得了萃取速率方程,并讨论了萃取的控制过程。实验发现萃取剂中的杂质对萃取具有较大的加速作用,这对工业生产具有一定的实际意义。2.用两相滴定法测定了两种新合成的J梭酸萃取剂CA-12和CA-100的某些重要的物理常数。这将有助于深入研究它们的萃取性质及机理。3.用层流恒界面池研究了CA-12萃取La, Gd,Er, Yb和Y的动力学。考察了各种因素对萃取速率的影响,获得了它们的萃取速率方程,实验发现了它们的萃取控速步骤并推测了其萃取机理。4.研究了HEHEHP对CA-12萃取Yb和Y的动力学的影响。实验发现在CA一12中加入少量的HEHEHP后,萃取活化能显著降低,萃取速率明显加快。由于加入HEHEHP后,萃取Yb的活化能的降低要比萃取Y的活化能降低的程度大',所以使Yb和Y的萃取分离因素加大。5.用两相滴定法研究了HEHEHP萃取铭的机理,CA-12萃取稀土及其相关离子的机理。并计算了它们相应的平衡常数。