49 resultados para Equacoes intervalares
Resumo:
[English] This paper is a tutorial introduction to pseudospectral optimal control. With pseudospectral methods, a function is approximated as a linear combination of smooth basis functions, which are often chosen to be Legendre or Chebyshev polynomials. Collocation of the differential-algebraic equations is performed at orthogonal collocation points, which are selected to yield interpolation of high accuracy. Pseudospectral methods directly discretize the original optimal control problem to recast it into a nonlinear programming format. A numerical optimizer is then employed to find approximate local optimal solutions. The paper also briefly describes the functionality and implementation of PSOPT, an open source software package written in C++ that employs pseudospectral discretization methods to solve multi-phase optimal control problems. The software implements the Legendre and Chebyshev pseudospectral methods, and it has useful features such as automatic differentiation, sparsity detection, and automatic scaling. The use of pseudospectral methods is illustrated in two problems taken from the literature on computational optimal control. [Portuguese] Este artigo e um tutorial introdutorio sobre controle otimo pseudo-espectral. Em metodos pseudo-espectrais, uma funcao e aproximada como uma combinacao linear de funcoes de base suaves, tipicamente escolhidas como polinomios de Legendre ou Chebyshev. A colocacao de equacoes algebrico-diferenciais e realizada em pontos de colocacao ortogonal, que sao selecionados de modo a minimizar o erro de interpolacao. Metodos pseudoespectrais discretizam o problema de controle otimo original de modo a converte-lo em um problema de programa cao nao-linear. Um otimizador numerico e entao empregado para obter solucoes localmente otimas. Este artigo tambem descreve sucintamente a funcionalidade e a implementacao de um pacote computacional de codigo aberto escrito em C++ chamado PSOPT. Tal pacote emprega metodos de discretizacao pseudo-spectrais para resolver problemas de controle otimo com multiplas fase. O PSOPT permite a utilizacao de metodos de Legendre ou Chebyshev, e possui caractersticas uteis tais como diferenciacao automatica, deteccao de esparsidade e escalonamento automatico. O uso de metodos pseudo-espectrais e ilustrado em dois problemas retirados da literatura de controle otimo computacional.
Resumo:
As equações da cinétiica pontual de um reator nuclear térmico são integradas numericamente, utilizando um método matricial de continuação analitica. Essas equações são essencialmente não-negativas e possuem um autovalor dominante vinculado à reatividade do sistema. Também, descrevem-se os métodos de Hansen e Porsching.
Resumo:
O caos e a incoerência nas interações conservativas de três ondas e a transição súbita para o caos na equação não linear de Klein Gordon são estudados. É analisada a influência da presença de caos sobre a incoerência no problema da interação de um tripleto de ondas quando um modelo de aproximação adiabática deixa de ser válido. É encontrado um limiar para o valor do descasamento do tripleto de ondas, abaixo do qual a coerência e o acoplamento entre as ondas é o comportamento dominante. Na equação não linear de Klein Gordon estudou-se a transição entre um regime de dinâmica modulacional para um de caos espaço temporal e foi encontrada uma curva crítica no plano amplitude-frequência que o divide em regiões onde só existe transição para o caos caso o valor de amplitude exceder um certo limiar.
Resumo:
o presente trabalho aborda a aplicação do método dos elementos de contorno (MEC) para solução de problemas de flexão linear e geometricamente não-linear de placas semiespessas. Os modelos de placa empregados consideraram a influência do cisalhamento através de teorias de primeira ordem, especificamente as de Mindlin e Reissner. Uma formulação integral unificada dos modelos de placa utilizados é desenvolvida para o operador de Navier do problema, onde foram mantidos alguns termos de ordem superior no tensor deformação de Green. A formulação integral do problema de membrana acoplado ao de flexão é igualment desenvolvida, levando a um sistema de equações integrais não-lineares que descreve completamente problemas de placas que envolvem grandes deslocamentos. Estas equações podem ser particularizadas para problemas de flexão linear e estabilidade elástica. Tendo em vista a necessidade de se considerar derivadas dos deslocamentos translacionais, as equações integrais correspondentes ao gradiente dos deslocamentos também foram deduzidas, caracterizando uma formulação hipersingular. o método empregado para solução numérica do sistema de equações integrais foi o método direto dos elementos de contorno. Um tratamento das integrais fortemente singulares presentes nas equações foi realizado, baseado em expansões assint6ticas dos núcleos. Deste procedimento resulta uma abordagem regularizada que emprega apenas quadraturas padrão de Gauss-Legendre.
Resumo:
A resposta impulso é utilizada como ferramenta padrão no estudo direto de sistemas concentrados, discretos e distribuídos de ordem arbitrária. Esta abordagem leva ao desenvolvimento de uma plataforma unificada para a obtenção de respostas dinâmicas. Em particular, as respostas forçadas dos sistemas são decompostas na soma de uma resposta permanente e de uma resposta livre induzida pelos valores iniciais da resposta permanente. A teoria desenvolve-se de maneira geral e direta para sistemas de n-ésima ordem, introduzindo-se a base dinâmica gerada pela resposta impulso na forma padrão e normalizada, sem utilizar-se a formulação de estado, através da qual reduz-se um sistema de ordem superior para um sistema de primeira ordem. Considerou-se sistemas de primeira ordem a fim de acompanhar-se os muitos resultados apresentados na literatura através da formulação de espaço de estado. Os métodos para o cálculo da resposta impulso foram classificados em espectrais, não espectrais e numéricos. A ênfase é dada aos métodos não espectrais, pois a resposta impulso admite uma fórmula fechada que requer o uso de três equações características do tipo algébrica, diferencial e em diferenças Realizou-se simulações numéricas onde foram apresentados modelos vibratórios clássicos e não clássicos. Os sistemas considerados foram sistemas do tipo concentrado, discreto e distribuído. Os resultados da decomposição da resposta dinâmica de sistemas concentrados diante de cargas harmônicas e não harmônicas foram apresentados em detalhe. A decomposição para o caso discreto foi desenvolvida utilizando-se os esquemas de integração numérica de Adams-Basforth, Strömer e Numerov. Para sistemas distribuídos, foi considerado o modelo de Euler-Bernoulli com força axial, sujeito a entradas oscilatórias com amplitude triangular, pulso e harmônica. As soluções permanentes foram calculadas com o uso da função de Green espacial. A resposta impulso foi aproximada com o uso do método espectral.
Resumo:
Este trabalho analisa o sistema de avaliação do programa de qualidade de uma organização pública, mais especificamente a do Programa de Qualidade da Brigada Militar (PQBM), na visão dos seus próprios avaliadores, tendo a finalidade primordial de contribuir para o aperfeiçoamento do sistema avaliativo. O estudo baseia-se na teoria geral da administração, com ênfase na teoria clássica, na burocrática e na do desenvolvimento organizacional, aplicado às condições e contexto da organização Brigada Militar. Da totalidade dos 83 (oitenta e três) oficiais avaliadores participantes do processo avaliativo do PQBM, 72 (setenta e dois) responderam a um instrumento de levantamento de dados quantitativos, utilizando uma escala tipo Likert, com respostas intervalares de 0 a 4 (de discordo totalmente a concordo totalmente), e dados qualitativos, através de questões abertas. As questões abrangem variáveis de processo (aspectos organizacionais, relativos a método/conteúdo e relativos a recursos), assim como variáveis de resultado (aspectos relativos à estrutura, à atividade humana, à organização e ao meio-ambiente). Os resultados obtidos delineiam a percepção dos avaliadores quanto a mudanças e suas expectativas relativas ao processo avaliativo do PQBM e a capacidade da organização de absorver um novo modelo de gestão sistêmica. Demonstram, ainda, a distância entre o preconizado, quanto ao comportamento administrativo, e a realidade organizacional. Por fim, apresenta-se, através das análises das variáveis causais e das sugestões dos avaliadores, diversas ações para o desenvolvimento de uma gestão sistêmica da qualidade, e sugerem-se estudos mais aprofundados desses aspectos relativos a avaliação.
Resumo:
Substâncias carcinogênicas são diariamente lançadas no meio ambiente, tanto na atmosfera quanto em corpos hídricos. Estas são capazes de ligar-se a proteínas constituintes de tecidos vivos produzindo um carcinoma, cuja probabilidade de formação depende da afinidade do poluente com os grupos funcionais presentes nos substratos protéicos. Contudo, os mecanismos pelos quais ocorre a formação do carcinoma não estão totalmente esclarecidos. Alguns modelos baseados em propriedades moleculares foram formulados na tentativa de prever quais serão os mecanismos, compostos intermediários e produtos finais de reação. Porém, esses modelos apresentam sérias limitações por não levarem em conta a dinâmica do processo reativo. Para que se possa estimar os mecanismos, é preciso detectar a formação ou ruptura de ligações ao longo do tempo, o que torna necessário utilizar modelos transientes. O presente trabalho apresenta um modelo que resolve a equação de Schrödinger dependente do tempo para verificar qual o mecanismo de reação entre uma substância carcinogênica e um aminoácido. A simulação do cenário transiente proposto requer um baixo tempo de processamento e possibilita uma fácil interpretação dos resultados obtidos.
Resumo:
Propomos uma idealização da situação em que uma macromolécula é ionizada em um solvente. Neste modelo a área da superfície da molécula é suposta ser grande com respeito a seu diâmetro. A molécula é considerada como um dielétrico com uma distribuição de cargas em sua superfície. Utilizando as condições de transmissão, a distribuição de Boltzmann no solvente e resultados recentes sobre espaços de Sobolev no contexto de espaços métricos, bem como de integração sobre superfícies irregulares, o problema é formulado em forma variacional. Resultados clássicos do cálculo de variações permitem a resolução analítica do problema.
Resumo:
A paralelização de métodos de resolução de sistemas de equações lineares e não lineares é uma atividade que tem concentrado várias pesquisas nos últimos anos. Isto porque, os sistemas de equações estão presentes em diversos problemas da computação cientí ca, especialmente naqueles que empregam equações diferenciais parciais (EDPs) que modelam fenômenos físicos, e que precisam ser discretizadas para serem tratadas computacionalmente. O processo de discretização resulta em sistemas de equações que necessitam ser resolvidos a cada passo de tempo. Em geral, esses sistemas têm como características a esparsidade e um grande número de incógnitas. Devido ao porte desses sistemas é necessária uma grande quantidade de memória e velocidade de processamento, sendo adequado o uso de computação de alto desempenho na obtenção da solução dos mesmos. Dentro desse contexto, é feito neste trabalho um estudo sobre o uso de métodos de decomposição de domínio na resolução de sistemas de equações em paralelo. Esses métodos baseiam-se no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções de cada subdomínio. Uma vez que diferentes subdomínios podem ser tratados independentemente, tais métodos são atrativos para ambientes paralelos. Mais especi camente, foram implementados e analisados neste trabalho, três diferentes métodos de decomposição de domínio. Dois desses com sobreposição entre os subdomínios, e um sem sobreposição. Dentre os métodos com sobreposição foram estudados os métodos aditivo de Schwarz e multiplicativo de Schwarz. Já dentre os métodos sem sobreposição optou-se pelo método do complemento de Schur. Todas as implementações foram desenvolvidas para serem executadas em clusters de PCs multiprocessados e estão incorporadas ao modelo HIDRA, que é um modelo computacional paralelo multifísica desenvolvido no Grupo de Matemática da Computação e Processamento de Alto Desempenho (GMCPAD) para a simulação do escoamento e do transporte de substâncias em corpos de águas.
Resumo:
Este trabalho tem por objetivo estudar a regularidade de soluções de Equações Diferenciais Parciais Elípticas da forma Lu = f, para f 2 Lp(), onde p > 1. Para isto, usamos a Decomposição de Calderon-Zygmund e um resultado que é consequência deste, o Teorema da Interpolação de Marcinkiewicz. Além disso, usando quocientes-diferença provamos a regularidade das soluções para o caso p = 2 e L = ¡¢ de uma forma alternativa.
Resumo:
Neste trabalho, um problema de transferência de calor da dinâmica de gases rarefeitos, causado pela diferença de temperaturas nas superfícies de um canal, é abordado. O problema é formulado através dos modelos cinéticos BGK, S e Gross-Jackson da equação linearizada de Boltzmann e resolvido, de forma unificada, pelo método analítico de ordenadas discretas (método ADO). Resultados numéricos para as perturbações de densidade e temperatura e também para o fluxo de calor são apresentados e comparados, mostrando que não se pode dizer que algum dos três modelos seja uma melhor aproximação da solução aos resultados da equação linearizada de Boltzmann.
Resumo:
Nesse trabalho apresentamos algoritmos adaptativos do M´etodo do Res´ıduo M´ınimo Generalizado (GMRES) [Saad e Schultz, 1986], um m´etodo iterativo para resolver sistemas de equa¸c˜oes lineares com matrizes n˜ao sim´etricas e esparsas, o qual baseia-se nos m´etodos de proje¸c˜ao ortogonal sobre um subespa¸co de Krylov. O GMRES apresenta uma vers˜ao reinicializada, denotada por GMRES(m), tamb´em proposta por [Saad e Schultz, 1986], com o intuito de permitir a utiliza¸c˜ao do m´etodo para resolver grandes sistemas de n equa¸c˜oes, sendo n a dimens˜ao da matriz dos coeficientes do sistema, j´a que a vers˜ao n˜ao-reinicializada (“Full-GMRES”) apresenta um gasto de mem´oria proporcional a n2 e de n´umero de opera¸c˜oes de ponto-flutuante proporcional a n3, no pior caso. No entanto, escolher um valor apropriado para m ´e dif´ıcil, sendo m a dimens˜ao da base do subespa¸co de Krylov, visto que dependendo do valor do m podemos obter a estagna¸c˜ao ou uma r´apida convergˆencia. Dessa forma, nesse trabalho, acrescentamos ao GMRES(m) e algumas de suas variantes um crit´erio que tem por objetivo escolher, adequadamente, a dimens˜ao, m da base do subespa¸co de Krylov para o problema o qual deseja-se resolver, visando assim uma mais r´apida, e poss´ıvel, convergˆencia. Aproximadamente duas centenas de experimentos foram realizados utilizando as matrizes da Cole¸c˜ao Harwell-Boeing [MCSD/ITL/NIST, 2003], que foram utilizados para mostrar o comportamento dos algoritmos adaptativos. Foram obtidos resultados muito bons; isso poder´a ser constatado atrav´es da an´alise das tabelas e tamb´em da observa ¸c˜ao dos gr´aficos expostos ao longo desse trabalho.
Resumo:
Neste trabalho foi estudado o comportamento em altas pressões e temperatura ambiente de dois compostos com estrutura de escuterudita, CoSb3 e LaFe3CoSb12. A determinação dos parâmetros das equações de estado isotérmicas, bem como a verificação das diferenças relativas nas curvas de compressibilidade desses compostos, foram os objetivos principais deste trabalho. Ambos compostos foram sintetizados conforme rota proposta na literatura. O sucesso da síntese foi verificado por meio de difração de raios X, não sendo observada a presença de fases contaminantes. Como meio gerador de altas pressões foi utilizada uma câmara de bigornas de diamante (DAC). A evolução das estruturas destes compostos com a pressão foi acompanhada por meio de difração de raios X por dispersão em energia. Até o limite de pressão estática de cerca de 14 GPa (definido pelas condições experimentais previamente existentes no laboratório), não foram observadas anomalias nas curvas de volume versus pressão desses compostos ou mesmo evidências de transições de fase. Com o objetivo de estender este limite de pressão, foram feitas melhorias na célula de alta pressão existente no laboratório, possibilitando assim a geração de pressões de até 40 GPa. Três equações de estado isotérmicas foram ajustadas aos dados experimentais, utilizando como parâmetros no ajuste o módulo volumétrico isotrópico e sua derivada primeira com relação à pressão. Como resultado deste procedimento, verificou-se que a escuterudita com lantânio apresenta um módulo volumétrico ligeiramente menor que o CoSb3, sendo, portanto, mais compressível, apesar da presença do íon lantânio preenchendo as cavidades deste composto. Foi observada também uma mudança na compressibilidade da escuterudita CoSb3 acima de 20 GPa, devido, talvez, ao congelamento do meio transmissor de pressão ou ao pinçamento do rubi (calibrante de pressão) entre as bigornas da DAC. O CoSb3 foi comprimido até a pressão de 40 GPa, apresentando indícios de um estranho comportamento na seqüência decrescente de pressão. Após a descompressão, o parâmetro de rede desse composto, a pressão ambiente, mostrou-se maior que o da fase original. Este aumento do parâmetro de rede não foi acompanhado de alterações significativas do espectro de difração de raios X. Este efeito anômalo dever ser sujeito a verificação por meio de novos experimentos.
Resumo:
Neste trabalho estudamos uma equação diferencial parcial elíptica semilinear contendo uma singularidade e um termo de crescimento crítico. A existência de soluções depende da dimensão do espaço e do coeficiente da singularidade. Através da caracterização variacional e com o uso de seqüências de Palais-Smale provamos que o problema possui soluções não triviais.