823 resultados para Episodic memory
Resumo:
A multistudy analysis of positron emission tomography data identified three right prefrontal and two left prefrontal cortical sites, as well as a region in the anterior cingulate gyrus, where neuronal activity is correlated with the maintenance of episodic memory retrieval mode (REMO), a basic and necessary condition of remembering past experiences. The right prefrontal sites were near the frontal pole [Brodmann's area (BA) 10], frontal operculum (BA 47/45), and lateral dorsal area (BA 8/9). The two left prefrontal sites were homotopical with the right frontal pole and opercular sites. The same kinds of REMO sites were not observed in any other cerebral region. Many previous functional neuroimaging studies of episodic memory retrieval have reported activations near the frontal REMO sites identified here, although their function has not been clear. Many of these, too, probably have signaled their involvement in REMO. We propose that REMO activations largely if not entirely account for the frontal hemispheric asymmetry of retrieval as described by the original hemispheric encoding retrieval asymmetry model.
Resumo:
We investigated whether a physiological marker of cardiovascular health, pulse pressure (PP), and age magnified the effect of the functional COMT Val158Met (rs4680) polymorphism on 15-years cognitive trajectories [episodic memory (EM), visuospatial ability, and semantic memory] using data from 1585 non-demented adults from the Betula study. A multiple-group latent growth curve model was specified to gauge individual differences in change, and average trends therein. The allelic variants showed negligible differences across the cognitive markers in average trends. The older portion of the sample selectively age-magnified the effects of Val158Met on EM changes, resulting in greater decline in Val compared to homozygote Met carriers. This effect was attenuated by statistical control for PP. Further, PP moderated the effects of COMT on 15-years EM trajectories, resulting in greater decline in Val carriers, even after accounting for the confounding effects of sex, education, cardiovascular diseases (diabetes, stroke, and hypertension), and chronological age, controlled for practice gains. The effect was still present after excluding individuals with a history of cardiovascular diseases. The effects of cognitive change were not moderated by any other covariates. This report underscores the importance of addressing synergistic effects in normal cognitive aging, as the addition thereof may place healthy individuals at greater risk for memory decline.
Resumo:
Research examining changes in memory and memory awareness during learning suggests that early in the process, students primarily have representations that are episodic in nature and experience, 'remember' awareness during recall. However, as learning continues and schematization occurs, students' knowledge is more likely to be dominated by semantic memory representations and 'just know' awareness is experienced during recall. The greater the amount of remembering experienced early in learning, the more likely it is that the shift to knowing will occur in students. In this study, university students studied either material rich in distinctive features that may serve as cues to episodic memory, or material lacking in these features. Students' knowledge was tested after a 2-day and a 5-wk interval. In contrast to students who studied the material lacking distinctive features, students who studied the distinctively rich material showed a predominance of remember awareness on the first test, and on the follow-up test showed a predominance of know awareness and were able to recall more details of the learning material. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Episodic memory formation is shaped by expectation. Events that generate expectations have the capacity to influence memory. Additionally, whether subsequent events meet or violate expectations has consequences for memory. However, clarification is still required to illuminate the circumstances and direction of memory modulation. In the brain, the mechanisms by which expectation modulates memory formation also require consideration. The dopamine system has been implicated in signaling events associated with different states of expectancy; it has also been shown to modulate episodic memory formation in the hippocampus. Thus, the studies included in this dissertation utilized both functional magnetic resonance imaging (fMRI) and behavioral testing to examine when and how the dopaminergic system supports the modulation of memory by expectation. The work aimed to characterize the activation of dopaminergic circuitry in response to cues that generate expectancy, during periods of anticipation, and in response to outcomes that resolve expectancy. The studies also examined how each of these event types influenced episodic memory formation. The present findings demonstrated that novelty and expectancy violation both drive dopaminergic circuitry capable of contributing to memory formation. Consistent with elevated dopaminergic midbrain and hippocampus activation for each, expected versus expectancy violating novelty did not differentially affect memory success. We also showed that high curiosity expectancy states drive memory formation. This was supported by activation in dopaminergic circuitry that was greater for subsequently remembered information only in the high curiosity state. Finally, we showed that cues that generate high expected reward value versus high reward uncertainty differentially modulate memory formation during reward anticipation. This behavioral result was consistent with distinct temporal profiles of dopaminergic action having differential downstream effects on episodic memory formation. Integrating the present studies with previous research suggests that dopaminergic circuitry signals events that are unpredicted, whether cuing or resolving expectations. It also suggests that contextual differences change the contribution of the dopaminergic system during anticipation, depending on the nature of the expectation. And finally, this work is consistent with a model in which dopamine elevation in response to expectancy events positively modulates episodic memory formation.
Resumo:
[EN] The experiment discussed in this paper is a direct replication of Finkbeiner (2005) and an indirect replication of Jiang and Forster (2001) and Witzel and Forster(2012). The paper explores the use of episodic memory in L2 vocabulary processing. By administering an L1 episodic recognition task with L2 masked translation primes, reduced reaction times would suggest L2 vocabulary storage in episodic memory. The methodology follows Finkbeiner (2005) who argued that a blank screen introduced after the prime in Jiang Forster (2001) led to a ghosting effect, compromising the imperceptibility of the prime. The results here mostly corroborate Finkbeiner (2005) with no significant priming effects. While Finkbeiner discusses his findings in terms of the dissociability of episodic and semantic memory, and discounts Jiang and Forster’s (2001) results to participants’ strategic responding, I add a layer of analysis based on declarative and procedural constituents. From this perspective, Jiang and Forster (2001) and Witzel and Forster’s (2012) results can be seen as possible episodic memory activation, and Finkbeiner’s (2005) and my lack of priming effects might be due to the sole activation of procedural neural networks. Priming effects are found in concrete and abstract words but require verification through further experimentation.
Resumo:
A large proportion of human populations suffer memory impairments either caused by normal aging or afflicted by diverse neurological and neurodegenerative diseases. Memory enhancers and other drugs tested so far against memory loss have failed to produce therapeutic efficacy in clinical trials and thus, there is a need to find remedy for this mental disorder. In search for cure of memory loss, our laboratory discovered a robust memory enhancer called RGS14(414). A treatment in brain with its gene produces an enduring effect on memory that lasts for lifetime of rats. Therefore, current thesis work was designed to investigate whether RGS14(414) treatment can prevent memory loss and furthermore, explore through biological processes responsible for RGS-mediated memory enhancement. We found that RGS14(414) gene treatment prevented episodic memory loss in rodent models of normal aging and Alzheimer´s disease. A memory loss was observed in normal rats at 18 months of age; however, when they were treated with RGS14(414) gene at 3 months of age, they abrogated this deficit and their memory remained intact till the age of 22 months. In addition to normal aging rats, effect of memory enhancer treatment in mice model of Alzheimer´s disease (AD-mice) produced a similar effect. AD-mice subjected to treatment with RGS14(414) gene at the age of 2 months, a period when memory was intact, showed not only a prevention in memory loss observed at 4 months of age but also they were able to maintain normal memory after 6 months of the treatment. We posit that long-lasting effect on memory enhancement and prevention of memory loss mediated through RGS14(414) might be due to a permanent structural change caused by a surge in neuronal connections and enhanced neuronal remodeling, key processes for long-term memory formation. A neuronal arborization analysis of both pyramidal and non-pyramidal neurons in brain of RGS14(414)-treated rats exhibited robust rise in neurites outgrowth of both kind of cells, and an increment in number of branching from the apical dendrite of pyramidal neurons, reaching to almost three times of the control animals. To further understand of underlying mechanism by which RGS14(414) induces neuronal arborization, we investigated into neurotrophic factors. We observed that RGS14 treatment induces a selective increase in BDNF. Role of BDNF in neuronal arborization, as well as its implication in learning and memory processes is well described. In addition, our results showing a dynamic expression pattern of BDNF during ORM processing that overlapped with memory consolidation further support the idea of the implication of this neurotrophin in formation of long-term memory in RGS-animals. On the other hand, in studies of expression profiling of RGS-treated animals, we have demonstrated that 14-3-3ζ protein displays a coherent relationship to RGS-mediated ORM enhancement. Recent studies have demonstrated that the interaction of receptor for activated protein kinase 1 (RACK1) with 14-3-3ζ is essential for its nuclear translocation, where RACK1-14-3-3ζ complex binds at promotor IV region of BDNF and promotes an increase in BDNF gene transcription. These observations suggest that 14-3-3ζ might regulate the elevated level of BDNF seen in RGS14(414) gene treated animals. Therefore, it seems that RGS-mediated surge in 14-3-3ζ causes elevated BDNF synthesis needed for neuronal arborization and enhanced ORM. The prevention of memory loss might be mediated through a restoration in BDNF and 14-3-3ζ protein levels, which are significantly decreased in aging and Alzheimer’s disease. Additionally, our results demonstrate that RGS14(414) treatment could be a viable strategy against episodic memory loss.
Resumo:
The aim of this study was to analyze semantic and episodic memory deficits in children with mesial temporal sclerosis (MTS) and their correlation with clinical epilepsy variables. For this purpose, 19 consecutive children and adolescents with MTS (8 to 16 years old) were evaluated and their performance on five episodic memory tests (short- and long-term memory and learning) and four semantic memory tests was compared with that of 28 healthy volunteers. Patients performed worse on tests of immediate and delayed verbal episodic memory, visual episodic memory, verbal and visual learning, mental scanning for semantic clues, object naming, word definition, and repetition of sentences. Clinical variables such as early age at seizure onset, severity of epilepsy, and polytherapy impaired distinct types of memory. These data confirm that children with MTS have episodic memory deficits and add new information on semantic memory. The data also demonstrate that clinical variables contribute differently to episodic and semantic memory performance. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Item noise models of recognition assert that interference at retrieval is generated by the words from the study list. Context noise models of recognition assert that interference at retrieval is generated by the contexts in which the test word has appeared. The authors introduce the bind cue decide model of episodic memory, a Bayesian context noise model, and demonstrate how it can account for data from the item noise and dual-processing approaches to recognition memory. From the item noise perspective, list strength and list length effects, the mirror effect for word frequency and concreteness, and the effects of the similarity of other words in a list are considered. From the dual-processing perspective, process dissociation data on the effects of length. temporal separation of lists, strength, and diagnosticity of context are examined. The authors conclude that the context noise approach to recognition is a viable alternative to existing approaches. (PsycINFO Database Record (c) 2008 APA, all rights reserved)
Resumo:
Since Damasio introduced the somatic markers hypothesis in Damasio (1994), it has spread through the psychological community, where it is now commonly acknowledged that somatic states are a factor in producing the qualitative dimension of our experiences. Present actions are emotionally guided by those somatic states that were previously activated in similar experiences. In this model, somatic markers serve as a kind of embodied memory. Here, we test whether the manipulation of somatic markers can modulate the emotional evaluation of negative memories. Because facial feedback has been shown to be a powerful means of modifying emotional judgements, we used it to manipulate somatic markers. Participants first read a sad story in order to induce a negative emotional memory and then were asked to rate their emotions and memory about the text. Twenty-four hours later, the same participants were asked to assume a predetermined facial feedback (smiling) while reactivating their memory of the sad story. The participants were once again asked to fill in emotional and memory questionnaires about the text. Our results showed that participants who had smiled during memory reactivation later rated the text less negatively than control participants. However, the contraction of the zygomaticus muscles during memory reactivation did not have any impact on episodic memory scores. This suggests that manipulating somatic states modified emotional memory without affecting episodic memory. Thus, modulating memories through bodily states might pave the way to studying memory as an embodied function and help shape new kinds of psychotherapeutic interventions.
Resumo:
This study aimed to describe the benefits of memory training for older adults with low education. Twenty-nine healthy older adults with zero to two years of formal education participated. Sixteen participants received training based on categorization (categorization group = CATG) and 13 received training based on mental images (imagery group = IMG). One group served as control for the other because they trained with different strategies. Training was offered in eight sessions of 90 minutes. The participants were evaluated pre- and posttraining. IMG improved performance in episodic memory tests and had reduced depressive symptoms. CATG increased the use of categorization but did not increase performance in episodic memory tests. Results suggest that the strategy based on the creation of mental images was more effective for older adults with low formal education.
Resumo:
Item noise models of recognition assert that interference at retrieval is generated by the words from the study list. Context noise models of recognition assert that interference at retrieval is generated by the contexts in which the test word has appeared. The authors introduce the bind cue decide model of episodic memory, a Bayesian context noise model, and demonstrate how it can account for data from the item noise and dual-processing approaches to recognition memory. From the item noise perspective, list strength and list length effects, the mirror effect for word frequency and concreteness, and the effects of the similarity of other words in a list are considered. From the dual-processing perspective, process dissociation data on the effects of length, temporal separation of lists, strength, and diagnosticity of context are examined. The authors conclude that the context noise approach to recognition is a viable alternative to existing approaches.
Resumo:
Episodic memory impairment is a well-recognized feature of mesial temporal lobe epilepsy. Semantic memory has received much less attention in this patient population. In this study, semantic memory aspects (word-picture matching, word definition, confrontation and responsive naming, and word list generation) in 19 patients with left and right temporal lobe epilepsy secondary to mesial temporal sclerosis (MTS) were compared with those of normal controls. Patients with LMTS showed impaired performance in word definition (compared to controls and RMTS) and in responsive naming (compared to controls). RMTS and LMTS patients performed worse than controls in word-picture matching. Both patients with left and right mesial temporal lobe epilepsy performed worse than controls in word list generation and in confrontation naming tests. Attentional-executive dysfunction may have contributed to these deficits. We conclude that patients with left and right NITS display impaired aspects of semantic knowledge. A better understanding of semantic processing difficulties in these patients will provide better insight into the difficulties with activities of daily living in this patient population. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Objective: To compare the volume of the hippocampus and parahippocampal gyrus in elderly individuals with and without depressive disorders, and to determine whether the volumes of these regions correlate with scores on memory tests. Method: Clinical and demographic differences, as well as differences in regional gray matter volumes, were assessed in 48 elderly patients with depressive disorders and 31 control subjects. Brain (structural MRI) scans were processed using statistical parametric mapping and voxel-based morphometry. Cognitive tests were administered to subjects in both groups. Results: There were no between-group gray matter volume differences in the hippocampus or parahippocampal gyrus. In the elderly depressed group only, the volume of the left parahippocampal gyrus correlated with scores on the delayed naming portion of the visual verbal learning test. There were also significant direct correlations in depressed subjects between the volumes of the left hippocampus, right and left parahippocampal gyrus and immediate recall scores on verbal episodic memory tests and visual learning tests. In the control group, there were direct correlations only between overall cognitive performance (as assessed with the MMSE) and the volume of right hippocampus, and between the total score on the visual verbal learning test and the volume of the right and left parahippocampal gyrus. Conclusions: These findings highlight different patterns of relationship between cognitive performance and volumes of medial temporal structures in depressed individuals and healthy elderly subjects. The direct correlation between delayed visual verbal memory recall scores with left parahippocampal volumes specifically in elderly depressed individuals provides support to the view that depression in elderly populations may be a risk factor for dementia. (C) 2009 Elsevier Inc. All rights reserved.