998 resultados para Epidemic models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mass migration to Asian cities is a defining phenomenon of the present age, as hundreds of millions of people move from rural areas or between cities in search of economic prosperity. Although many do prosper, large numbers of people experience significant social disadvantage. This is especially the case among poorly educated, migrant unskilled unregistered male laborers who do much of the manual work throughout the cities. These men are at significant risk for many health problems, including HIV infection. However, to date there has been little research in developing countries to explain the determinants of this risk, and thereby to suggest feasible preventive strategies. Objectives and Methodology: Using combined qualitative and quantitative methods, the aim of this study was to explore the social contexts that affect health vulnerabilities and to develop conceptual models to predict risk behaviors for HIV [illicit drug use, unsafe sex, and non-testing for HIV] among male street laborers in Hanoi, Vietnam. Qualitative Research: Sixteen qualitative interviews revealed a complex variety of life experiences, beliefs and knowledge deficits that render these mostly poor and minimally educated men vulnerable to health problems including HIV infection. This study formed a conceptual model of numerous stressors related to migrants’ life experiences in urban space, including physical, financial and social factors. A wide range of coping strategies were adopted to deal with stressors – including problem-focused coping (PFC) and emotion-focused coping (EFC), pro-social and anti-social, active and passive. These men reported difficulty in coping with stressors because they had weak social networks and lacked support from formal systems. A second conceptual model emerged that highlighted equivalent influences of individual psychological factors, social integration, social barriers, and accessibility regarding drug use and sexual risk behavior. Psychological dimensions such as tedium, distress, fatalism and revenge, were important. There were strong effects of collective decision-making and fear of social isolation on shaping risk behaviors. These exploratory qualitative interviews helped to develop a culturally appropriate instrument for the quantitative survey and informed theoretical models of the factors that affect risk behaviors for HIV infection. Quantitative Research: The Information-Motivation-Behavioral Skills (IMB) model was adopted as the theoretical framework for a large-scale survey. It was modified to suit the contexts of these Vietnamese men. By doing a social mapping technique, 450 male street laborers were interviewed in Hanoi, Vietnam. The survey revealed that the risk of acquiring and transmitting HIV was high among these men. One in every 12 men reported homosexual or bisexual behavior. These men on average had 3 partners within the preceding year, and condom use was inconsistent. One third had had sex with commercial sex workers (CSW) and only 30% of them reported condom use; 17% used illicit drugs sometimes, with 66.7% of them frequently sharing injecting equipment with peers. Despite the risks, only 19.8% of men had been tested for HIV during the previous 12 months. These men have limited HIV knowledge and only moderate motivation and perceived behavioral skills for protective behavior. Although rural-to-urban migration was not associated with sexual risk behavior, three elements of the IMB model and depression associated with the process of mobility were significant determinants of sexual behavior. A modified model that incorporated IMB elements and psychosocial stress was found to be a better fit than the original IMB model alone in predicting protected sex behavior among the men. Men who were less psychologically and socially stressed, better informed and motivated for HIV prevention were more likely to demonstrate behavioral skills, and in turn were more likely to engage in safer sexual behavior. With regard to drug use, although the conventional model accounted for slightly less variance than the modified IMB model, data were of better fit for the conventional model. Multivariate analyses revealed that men who originated from urban areas, those who were homo- or bi-sexually identified and had better knowledge and skills for HIV prevention were more likely to access HIV testing, while men who had more sexual partners and those who did not use a condom for sex with CSW were least likely to take a test. The modified IMB model provided a better fit than the conventional model, as it explained a greater variance in HIV testing. Conclusions and Implications: This research helps to highlight a potential hidden HIV epidemic among street male, unskilled, unregistered laborers. This group has multiple vulnerabilities to HIV infection through both their partners and peers. However, most do not know their HIV status and have limited knowledge about preventing infection. This is the first application of a modified IMB model of risk behaviors for HIV such as drug use, condom use, and uptake of HIV testing to research with male street laborers in urban settings. The study demonstrated that while the extended IMB model had better fit than the conventional version in explaining the behaviors of safe sex and HIV testing, it was not so for drug use. The results provide interesting directions for future research and suggest ways to effectively design intervention strategies. The findings should shed light on culturally appropriate HIV preventive education and support programs for these men. As Vietnam has much in common with other developing countries in Southeast Asia, this research provides evidence for policy and practice that may be useful for public health systems in similar countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the effect of mobility constraints on epidemic broad-cast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies use generally unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) with a random waypoint mobility model with mobility constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the effect of mobility constraints on epidemic broadcast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies generally use unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of three classes of epidemic broadcast mechanisms - P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) - with a random waypoint mobility model with mobility constraints. Our finding includes that the existence of mobility constraints significantly improves the reach ability and dissemination speed of epidemic broadcast mechanisms while degrading their efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applications such as neuroscience, telecommunication, online social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work, we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a tractable framework for modelling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two stochastic epidemic lattice models, the susceptible-infected-recovered and the susceptible-exposed-infected models, are studied on a Cayley tree of coordination number k. The spreading of the disease in the former is found to occur when the infection probability b is larger than b(c) = k/2(k - 1). In the latter, which is equivalent to a dynamic site percolation model, the spreading occurs when the infection probability p is greater than p(c) = 1/(k - 1). We set up and solve the time evolution equations for both models and determine the final and time-dependent properties, including the epidemic curve. We show that the two models are closely related by revealing that their relevant properties are exactly mapped into each other when p = b/[k - (k - 1) b]. These include the cluster size distribution and the density of individuals of each type, quantities that have been determined in closed forms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the challenges in epidemiology is to account for the complex morphological structure of hosts such as plant roots, crop fields, farms, cells, animal habitats and social networks, when the transmission of infection occurs between contiguous hosts. Morphological complexity brings an inherent heterogeneity in populations and affects the dynamics of pathogen spread in such systems. We have analysed the influence of realistically complex host morphology on the threshold for invasion and epidemic outbreak in an SIR (susceptible-infected-recovered) epidemiological model. We show that disorder expressed in the host morphology and anisotropy reduces the probability of epidemic outbreak and thus makes the system more resistant to epidemic outbreaks. We obtain general analytical estimates for minimally safe bounds for an invasion threshold and then illustrate their validity by considering an example of host data for branching hosts (salamander retinal ganglion cells). Several spatial arrangements of hosts with different degrees of heterogeneity have been considered in order to separately analyse the role of shape complexity and anisotropy in the host population. The estimates for invasion threshold are linked to morphological characteristics of the hosts that can be used for determining the threshold for invasion in practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowing which individuals can be more efficient in spreading a pathogen throughout a determinate environment is a fundamental question in disease control. Indeed, over recent years the spread of epidemic diseases and its relationship with the topology of the involved system have been a recurrent topic in complex network theory, taking into account both network models and real-world data. In this paper we explore possible correlations between the heterogeneous spread of an epidemic disease governed by the susceptible-infected-recovered (SIR) model, and several attributes of the originating vertices, considering Erdos-Renyi (ER), Barabasi-Albert (BA) and random geometric graphs (RGG), as well as a real case study, the US air transportation network, which comprises the 500 busiest airports in the US along with inter-connections. Initially, the heterogeneity of the spreading is achieved by considering the RGG networks, in which we analytically derive an expression for the distribution of the spreading rates among the established contacts, by assuming that such rates decay exponentially with the distance that separates the individuals. Such a distribution is also considered for the ER and BA models, where we observe topological effects on the correlations. In the case of the airport network, the spreading rates are empirically defined, assumed to be directly proportional to the seat availability. Among both the theoretical and real networks considered, we observe a high correlation between the total epidemic prevalence and the degree, as well as the strength and the accessibility of the epidemic sources. For attributes such as the betweenness centrality and the k-shell index, however, the correlation depends on the topology considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether the virulence of HIV-1 has been changing since its introduction into Switzerland. DESIGN: A prospective cohort study of HIV-1 infected individuals with well-characterized pre-therapy disease history. METHODS: To minimize the effect of recently imported viruses and ethnicity-associated host factors, the analysis was restricted to the white, north-west-European majority population of the cohort. Virulence was characterized by the decline slope of the CD4 cell count (n = 817 patients), the decline slope of the CD4:CD8 ratio (n = 815 patients) and the viral setpoint (n = 549 patients) in untreated patients with sufficient data points. Linear regression models were used to detect correlations between the date of diagnosis (ranging between 1984 and 2003) and the virulence markers, controlling for gender, exposure category, age and CD4 cell count at entry. RESULTS: We found no correlation between any of the virulence markers and the date of diagnosis. Inspection of short-term trends confirmed that virulence has fluctuated around a stable level over time. CONCLUSIONS: The lack of long-term time trends in the virulence markers indicates that HIV-1 is not evolving towards increasing or decreasing virulence at a perceptible rate. Both highly virulent and attenuated strains have apparently been unable to spread at the population level. This result suggests that either the evolution of virulence may be slow or inhibited due to evolutionary constraints, or HIV-1 may have already evolved to optimal virulence in the human host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ebola virus disease is a lethal human and primate disease that requires a particular attention from the international health authorities due to important recent outbreaks in some Western African countries and isolated cases in European and North-America continents. Regarding the emergency of this situation, various decision tools, such as mathematical models, were developed to assist the authorities to focus their efforts in important factors to eradicate Ebola. In a previous work, we have proposed an original deterministic spatial-temporal model, called Be-CoDiS (Between-Countries Disease Spread), to study the evolution of human diseases within and between countries by taking into consideration the movement of people between geographical areas. This model was validated by considering numerical experiments regarding the 2014-16 West African Ebola Virus Disease epidemic. In this article, we propose to perform a stability analysis of Be-CoDiS. Our first objective is to study the equilibrium states of simplified versions of this model, limited to the cases of one an two countries, and to determine their basic reproduction ratios. Then, in order to give some recommendations for the allocation of resources used to control the disease, we perform a sensitivity analysis of those basic reproduction ratios regarding the model parameters. Finally, we validate the obtained results by considering numerical experiments based on data from the 2014-16 West African Ebola Virus Disease epidemic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape: to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913-958,2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that. under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing that mainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopper Bryodema tuberculata.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with a stochastic SIR (susceptible-infective-removed) model for the spread of an epidemic amongst a population of individuals, with a random network of social contacts, that is also partitioned into households. The behaviour of the model as the population size tends to infinity in an appropriate fashion is investigated. A threshold parameter which determines whether or not an epidemic with few initial infectives can become established and lead to a major outbreak is obtained, as are the probability that a major outbreak occurs and the expected proportion of the population that are ultimately infected by such an outbreak, together with methods for calculating these quantities. Monte Carlo simulations demonstrate that these asymptotic quantities accurately reflect the behaviour of finite populations, even for only moderately sized finite populations. The model is compared and contrasted with related models previously studied in the literature. The effects of the amount of clustering present in the overall population structure and the infectious period distribution on the outcomes of the model are also explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with change point analysis for time series, i.e. with detection of structural breaks in time-ordered, random data. This long-standing research field regained popularity over the last few years and is still undergoing, as statistical analysis in general, a transformation to high-dimensional problems. We focus on the fundamental »change in the mean« problem and provide extensions of the classical non-parametric Darling-Erdős-type cumulative sum (CUSUM) testing and estimation theory within highdimensional Hilbert space settings. In the first part we contribute to (long run) principal component based testing methods for Hilbert space valued time series under a rather broad (abrupt, epidemic, gradual, multiple) change setting and under dependence. For the dependence structure we consider either traditional m-dependence assumptions or more recently developed m-approximability conditions which cover, e.g., MA, AR and ARCH models. We derive Gumbel and Brownian bridge type approximations of the distribution of the test statistic under the null hypothesis of no change and consistency conditions under the alternative. A new formulation of the test statistic using projections on subspaces allows us to simplify the standard proof techniques and to weaken common assumptions on the covariance structure. Furthermore, we propose to adjust the principal components by an implicit estimation of a (possible) change direction. This approach adds flexibility to projection based methods, weakens typical technical conditions and provides better consistency properties under the alternative. In the second part we contribute to estimation methods for common changes in the means of panels of Hilbert space valued time series. We analyze weighted CUSUM estimates within a recently proposed »high-dimensional low sample size (HDLSS)« framework, where the sample size is fixed but the number of panels increases. We derive sharp conditions on »pointwise asymptotic accuracy« or »uniform asymptotic accuracy« of those estimates in terms of the weighting function. Particularly, we prove that a covariance-based correction of Darling-Erdős-type CUSUM estimates is required to guarantee uniform asymptotic accuracy under moderate dependence conditions within panels and that these conditions are fulfilled, e.g., by any MA(1) time series. As a counterexample we show that for AR(1) time series, close to the non-stationary case, the dependence is too strong and uniform asymptotic accuracy cannot be ensured. Finally, we conduct simulations to demonstrate that our results are practically applicable and that our methodological suggestions are advantageous.