953 resultados para Eph Receptors
Resumo:
The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of vascular morphogenesis. EphrinB2 may have an active signaling role, resulting in bi-directional signal transduction downstream of both ephrinB2 and Eph receptors. To separate the ligand and receptor-like functions of ephrinB2 in mice, we replaced the endogenous gene by cDNAs encoding either carboxyterminally truncated (ephrinB2(DeltaC)) or, as a control, full-length ligand (ephrinB2(WT)). While homozygous ephrinB2(WT/WT) animals were viable and fertile, loss of the ephrinB2 cytoplasmic domain resulted in midgestation lethality similar to ephrinB2 null mutants (ephrinB2(KO)). The truncated ligand was sufficient to restore guidance of migrating cranial neural crest cells, but ephrinB2(DeltaC/DeltaC) embryos showed defects in vasculogenesis and angiogenesis very similar to those observed in ephrinB2(KO/KO) animals. Our results indicate distinct requirements of functions mediated by the ephrinB carboxyterminus for developmental processes in the vertebrate embryo.
Resumo:
With the rapid increase in approaches to pro- or anti-angiogenic therapy, new and effective methodologies for administration of cell-bound growth factors will be required. We sought to develop the natural hydrogel matrix fibrin as platform for extensive interactions and continuous signaling by the vascular morphogen ephrin-B2 that normally resides in the plasma membrane and requires multivalent presentation for ligation and activation of Eph receptors on apposing endothelial cell surfaces. Using fibrin and protein engineering technology to induce multivalent ligand presentation, a recombinant mutant ephrin-B2 receptor binding domain was covalently coupled to fibrin networks at variably high densities. The ability of fibrin-bound ephrin-B2 to act as ligand for endothelial cells was preserved, as demonstrated by a concomitant, dose-dependent increase of endothelial cell binding to engineered ephrin-B2-fibrin substrates in vitro. The therapeutic relevance of ephrin-B2-fibrin implant matrices was demonstrated by a local angiogenic response in the chick embryo chorioallontoic membrane evoked by the local and prolonged presentation of matrix-bound ephrin-B2 to tissue adjacing the implant. This new knowledge on biomimetic fibrin vehicles for precise local delivery of membrane-bound growth factor signals may help to elucidate specific biological growth factor function, and serve as starting point for development of new treatment strategies.
Resumo:
Eph receptors and their membrane-bound ligands, the ephrins, represent a complex subfamily of receptor tyrosine kinases (RTKs). Eph/ephrin binding can lead to various and opposite cellular behaviors such as adhesion versus repulsion, or cell migration versus cell-adhesion. Recently, Eph endocytosis has been identified as one of the critical steps responsible for such diversity. Eph receptors, as many RTKs, are rapidly endocytosed following ligand-mediated activation and traffic through endocytic compartments prior to degradation. However, it is becoming obvious that endocytosis controls signaling in many different manners. Here we showed that activated EphA2 are degraded in the lysosomes and that about 35% of internalized receptors are recycled back to the plasma membrane. Our study is also the first to demonstrate that EphA2 retains the capacity to signal in endosomes. In particular, activated EphA2 interacted with the Rho family GEF Tiam1 in endosomes. This association led to Tiam1 activation, which in turn increased Rac1 activity and facilitated Eph/ephrin endocytosis. Disrupting Tiam1 function with RNA interference impaired both ephrinA1-dependent Rac1 activation and ephrinA1-induced EphA2 endocytosis. In summary, our findings shed new light on the regulation of EphA2 endocytosis, intracellular trafficking and signal termination and establish Tiam1 as an important modulator of EphA2 signaling.
Resumo:
Interactions between Eph receptors and their membrane-bound ligands (ephrins) are of critical importance for key developmental processes such as boundary formation or vascular development. Their downstream signaling pathways are intricate and heterogeneous at several levels, the combined effect being a highly complex and flexible system. Here we demonstrate that activated EphB1 induces tyrosine phosphorylation of the focal adhesion protein paxillin at Tyr-31 and Tyr-118 and is recruited to paxillin-focal adhesion kinase (FAK) complexes. Pretreatment with the specific Src inhibitor PP2, or expression of dominant-negative, kinase-dead c-Src abrogates EphB1-induced tyrosine phosphorylation of paxillin. Cells transfected with the paxillin mutant Y31F/Y118F displayed a reduced migration in response to ephrin B2 stimulation. Furthermore, expression of an LD4 deletion mutant (paxillin DeltaLD4) significantly reduces EphB1-paxillin association, paxillin tyrosine phosphorylation, as well as EphB1-dependent cell migration. Finally, mutation of the Nck-binding site of EphB1 (Y594F) interrupts the interaction between Nck, paxillin, and EphB1. These data suggest a model in which ligand-activated EphB1 forms a signaling complex with Nck, paxillin, and focal adhesion kinase and induces tyrosine phosphorylation of paxillin in a c-Src-dependent manner to promote cell migration.
Resumo:
Eph receptors and their ligands (ephrins) play an important role in axonal guidance, topographic mapping, and angiogenesis. The signaling pathways mediating these activities are starting to emerge and are highly cell- and receptor-type specific. Here we demonstrate that activated EphB1 recruits the adaptor proteins Grb2 and p52Shc and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. EphB1-mediated increase of cell migration was abrogated by the MEK inhibitor PD98059 and Src inhibitor PP2. In contrast, cell adhesion, which we previously showed to be c-jun NH2-terminal kinase (JNK) dependent, was unaffected by ERK1/2 and Src inhibition. Expression of dominant-negative c-Src significantly reduced EphB1-dependent ERK1/2 activation and chemotaxis. Site-directed mutagenesis experiments demonstrate that tyrosines 600 and 778 of EphB1 are required for its interaction with c-Src and p52Shc. Furthermore, phosphorylation of p52Shc by c-Src is essential for its recruitment to EphB1 signaling complexes through its phosphotyrosine binding domain. Together these findings highlight a new aspect of EphB1 signaling, whereby the concerted action of c-Src and p52Shc activates MAPK/ERK and regulates events involved in cell motility.
Resumo:
Developmental assembly of the renal microcirculation is a precise and coordinated process now accessible to experimental scrutiny. Although definition of the cellular and molecular determinants is incomplete, recent findings have reframed concepts and questions about the origins of vascular cells in the glomerulus and the molecules that direct cell recruitment, specialization and morphogenesis. New findings illustrate principles that may be applied to defining critical steps in microvascular repair following glomerular injury. Developmental assembly of endothelial, mesangial and epithelial cells into glomerular capillaries requires that a coordinated, temporally defined series of steps occur in an anatomically ordered sequence. Recent evidence shows that both vasculogenic and angiogenic processes participate. Local signals direct cell migration, proliferation, differentiation, cell-cell recognition, formation of intercellular connections, and morphogenesis. Growth factor receptor tyrosine kinases on vascular cells are important mediators of many of these events. Cultured cell systems have suggested that basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) promote endothelial cell proliferation, migration or morphogenesis, while genetic deletion experiments have defined an important role for PDGF beta receptors and platelet-derived growth factor (PDGF) B in glomerular development. Receptor tyrosine kinases that convey non-proliferative signals also contribute in kidney and other sites. The EphB1 receptor, one of a diverse class of Eph receptors implicated in neural cell targeting, directs renal endothelial migration, cell-cell recognition and assembly, and is expressed with its ligand in developing glomeruli. Endothelial TIE2 receptors bind angiopoietins (1 and 2), the products of adjacent supportive cells, to signals direct capillary maturation in a sequence that defines cooperative roles for cells of different lineages. Ultimately, definition of the cellular steps and molecular sequence that direct microvascular cell assembly promises to identify therapeutic targets for repair and adaptive remodeling of injured glomeruli.
Resumo:
The EphA3 receptor tyrosine kinase preferentially binds ephrin-A5, a member of the corresponding subfamily of membrane-associated ligands. Their interaction regulates critical cell communication functions in normal development and may play a role in neoplasia. Here we describe a random mutagenesis approach, which we employed to study the molecular determinants of the EphA3/ephrin-A5 recognition. Selection and functional characterization of EphA3 point mutants with impaired ephrin-A5 binding from a yeast expression library defined three EphA3 surface areas that are essential for the EphA3/ephrin-A5 interaction. Two of these map to regions identified previously in the crystal structure of the homologous EphB2-ephrin-B2 complex as potential ligand/receptor interfaces. In addition, we identify a third EphA3/ephrin-A5 interface that falls outside the structurally characterized interaction domains. Functional analysis of EphA3 mutants reveals that all three Eph/ephrin contact areas are essential for the assembly of signaling-competent, oligomeric receptor-ligand complexes.
Resumo:
The interactions between Eph receptor tyrosine kinases and their ephrin ligands regulate cell migration and axon pathfinding. The EphA receptors are generally thought to become activated by ephrin-A ligands, whereas the EphB receptors interact with ephrin-B ligands. Here we show that two of the most widely studied of these molecules, EphB2 and ephrin-A5, which have never been described to interact with each other, do in fact bind one another with high affinity. Exposure of EphB2-expressing cells to ephrin-A5 leads to receptor clustering, autophosphorylation and initiation of downstream signaling. Ephrin-A5 induces EphB2-mediated growth cone collapse and neurite retraction in a model system. We further show, using X-ray crystallography, that the ephrin-A5-EphB2 complex is a heterodimer and is architecturally distinct from the tetrameric EphB2-ephrin-B2 structure. The structural data reveal the molecular basis for EphB2-ephrin-A5 signaling and provide a framework for understanding the complexities of functional interactions and crosstalk between A- and B-subclass Eph receptors and ephrins.
Resumo:
Assembling a nervous system requires exquisite specificity in the construction of neuronal connectivity. One method by which such specificity is implemented is the presence of chemical cues within the tissues, differentiating one region from another, and the presence of receptors for those cues on the surface of neurons and their axons that are navigating within this cellular environment.
Connections from one part of the nervous system to another often take the form of a topographic mapping. One widely studied model system that involves such a mapping is the vertebrate retinotectal projection-the set of connections between the eye and the optic tectum of the midbrain, which is the primary visual center in non-mammals and is homologous to the superior colliculus in mammals. In this projection the two-dimensional surface of the retina is mapped smoothly onto the two-dimensional surface of the tectum, such that light from neighboring points in visual space excites neighboring cells in the brain. This mapping is implemented at least in part via differential chemical cues in different regions of the tectum.
The Eph family of receptor tyrosine kinases and their cell-surface ligands, the ephrins, have been implicated in a wide variety of processes, generally involving cellular movement in response to extracellular cues. In particular, they possess expression patterns-i.e., complementary gradients of receptor in retina and ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., repulsive guidance of axons and defective mapping in mutants, respectively-consistent with the long-sought retinotectal chemical mapping cues.
The tadpole of Xenopus laevis, the South African clawed frog, is advantageous for in vivo retinotectal studies because of its transparency and manipulability. However, neither the expression patterns nor the retinotectal roles of these proteins have been well characterized in this system. We report here comprehensive descriptions in swimming stage tadpoles of the messenger RNA expression patterns of eleven known Xenopus Eph and ephrin genes, including xephrin-A3, which is novel, and xEphB2, whose expression pattern has not previously been published in detail. We also report the results of in vivo protein injection perturbation studies on Xenopus retinotectal topography, which were negative, and of in vitro axonal guidance assays, which suggest a previously unrecognized attractive activity of ephrins at low concentrations on retinal ganglion cell axons. This raises the possibility that these axons find their correct targets in part by seeking out a preferred concentration of ligands appropriate to their individual receptor expression levels, rather than by being repelled to greater or lesser degrees by the ephrins but attracted by some as-yet-unknown cue(s).
Resumo:
Eph family receptor tyrosine kinases signal axonal guidance, neuronal bundling, and angiogenesis; yet the signaling systems that couple these receptors to targeting and cell-cell assembly responses are incompletely defined. Functional links to regulators of cytoskeletal structure are anticipated based on receptor mediated cell-cell aggregation and migratory responses. We used two-hybrid interaction cloning to identify EphB1-interactive proteins. Six independent cDNAs encoding the SH2 domain of the adapter protein, Nck, were recovered in a screen of a murine embryonic library. We mapped the EphB1 subdomain that binds Nck and its Drosophila homologue, DOCK, to the juxtamembrane region. Within this subdomain, Tyr594 was required for Nck binding. In P19 embryonal carcinoma cells, activation of EphB1 (ELK) by its ligand, ephrin-B1/Fc, recruited Nck to native receptor complexes and activated c-Jun kinase (JNK/SAPK). Transient overexpression of mutant EphB1 receptors (Y594F) blocked Nck recruitment to EphB1, attenuated downstream JNK activation, and blocked cell attachment responses. These findings identify Nck as an important intermediary linking EphB1 signaling to JNK.
Resumo:
Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.
Resumo:
ROLE OF LOW AFFINITY β1-ADRENERGIC RECEPTOR IN NORMAL AND DISEASED HEARTS Background: The β1-adrenergic receptor (AR) has at least two binding sites, 1HAR and 1LAR (high and low affinity site of the 1AR respectively) which cause cardiostimulation. Some β-blockers, for example (-)-pindolol and (-)-CGP 12177 can activate β1LAR at higher concentrations than those required to block β1HAR. While β1HAR can be blocked by all clinically used β-blockers, β1LAR is relatively resistant to blockade. Thus, chronic β1LAR activation may occur in the setting of β-blocker therapy, thereby mediating persistent βAR signaling. Thus, it is important to determine the potential significance of β1LAR in vivo, particularly in disease settings. Method and result: C57Bl/6 male mice were used. Chronic (4 weeks) β1LAR activation was achieved by treatment with (-)-CGP12177 via osmotic minipump. Cardiac function was assessed by echocardiography and catheterization. (-)-CGP12177 treatment in healthy mice increased heart rate and left ventricular (LV) contractility without detectable LV remodelling or hypertrophy. In mice subjected to an 8-week period of aorta banding, (-)-CGP12177 treatment given during 4-8 weeks led to a positive inotropic effect. (-)-CGP12177 treatment exacerbated LV remodelling indicated by a worsening of LV hypertrophy by ??% (estimated by weight, wall thickness, cardiomyocyte size) and interstitial/perivascular fibrosis (by histology). Importantly, (-)-CGP12177 treatment to aorta banded mice exacerbated cardiac expression of hypertrophic, fibrogenic and inflammatory genes (all p<0.05 vs. non-treated control with aorta banding).. Conclusion: β1LAR activation provides functional support to the heart, in both normal and diseased (pressure overload) settings. Sustained β1LAR activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure. Word count: 270
Resumo:
The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come.
Resumo:
Alcohol use disorders (AUDs) are complex and developing effective treatments will require the combination of novel medications and cognitive behavioral therapy approaches. Epidemiological studies have shown there is a high correlation between alcohol consumption and tobacco use, and the prevalence of smoking in alcoholics is as high as 80% compared to about 30% for the general population. Both preclinical and clinical data provide evidence that nicotine administration increases alcohol intake and nonspecific nicotinic receptor antagonists reduce alcohol-mediated behaviors. As nicotine interacts specifically with the neuronal nicotinic acetylcholine receptor (nAChR) system, this suggests that nAChRs play an important role in the behavioral effects of alcohol. In this review, we discuss the importance of nAChRs for the treatment of AUDs and argue that the use of FDA approved nAChR ligands, such as varenicline and mecamylamine, approved as smoking cessation aids may prove to be valuable treatments for AUDs. We also address the importance of combining effective medications with behavioral therapy for the treatment of alcohol dependent individuals.