992 resultados para Enzyme Activation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because adventitial fibroblasts play an important role in the repair of blood vessels, we assessed whether elevation in LDL concentrations would affect fibroblast function and whether this depended on activation of intracellular signaling pathways. We show here that in primary human fibroblasts, LDLs induced transient activation of the p38 mitogen-activated protein kinase (MAPK) pathway, but not the c-Jun N-terminal kinase MAPK pathway. This activation did not require the recruitment of the LDL receptor (LDLR), because LDLs efficiently stimulated the p38 MAPK pathway in human and mouse fibroblasts lacking functional LDLR, and because receptor-associated protein, an LDLR family antagonist, did not block the LDL-induced p38 activation. LDL particles also induced lamellipodia formation and cell spreading. These effects were blocked by SB203580, a specific p38 inhibitor. Our data demonstrate that LDLs can regulate the shape of fibroblasts in a p38 MAPK-dependent manner, a mechanism that may participate in wound healing or vessel remodeling as in atherosclerosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: In addition to its haemodynamic effects, angiotensin II (AngII) is thought to contribute to the development of cardiac hypertrophy via its growth factor properties. The activation of mitogen-activated protein kinases (MAPK) is crucial for stimulating cardiac growth. Therefore, the present study aimed to determine whether the trophic effects of AngII and the AngII-induced haemodynamic load were associated with specific cardiac MAPK pathways during the development of hypertrophy. Methods The activation of the extracellular-signal-regulated kinase (ERK), the c-jun N-terminal kinase (JNK) and the p38 kinase was followed in the heart of normotensive and hypertensive transgenic mice with AngII-mediated cardiac hypertrophy. Secondly, we used physiological models of AngII-dependent and AngII-independent renovascular hypertension to study the activation of cardiac MAPK pathways during the development of hypertrophy. RESULTS: In normotensive transgenic animals with AngII-induced cardiac hypertrophy, p38 activation is associated with the development of hypertrophy while ERK and JNK are modestly stimulated. In hypertensive transgenic mice, further activation of ERK and JNK is observed. Moreover, in the AngII-independent model of renovascular hypertension and cardiac hypertrophy, p38 is not activated while ERK and JNK are strongly stimulated. In contrast, in the AngII-dependent model, all three kinases are stimulated. CONCLUSIONS: These data suggest that p38 activation is preferentially associated with the direct effects of AngII on cardiac cells, whereas stimulation of ERK and JNK occurs in association with AngII-induced mechanical stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bisphosphonates are potent inhibitors of osteoclast function widely used to treat conditions of excessive bone resorption, including tumor bone metastases. Recent evidence indicates that bisphosphonates have direct cytotoxic activity on tumor cells and suppress angiogenesis, but the associated molecular events have not been fully characterized. In this study we investigated the effects of zoledronate, a nitrogen-containing bisphosphonate, and clodronate, a non-nitrogen-containing bisphosphonate, on human umbilical vein endothelial cell (HUVEC) adhesion, migration, and survival, three events essential for angiogenesis. Zoledronate inhibited HUVEC adhesion mediated by integrin alphaVbeta3, but not alpha5beta1, blocked migration and disrupted established focal adhesions and actin stress fibers without modifying cell surface integrin expression level or affinity. Zoledronate treatment slightly decreased HUVEC viability and strongly enhanced tumor necrosis factor (TNF)-induced cell death. HUVEC treated with zoledronate and TNF died without evidence of enhanced annexin-V binding, chromatin condensation, or nuclear fragmentation and caspase dependence. Zoledronate inhibited sustained phosphorylation of focal adhesion kinase (FAK) and in combination with TNF, with and without interferon (IFN) gamma, of protein kinase B (PKB/Akt). Constitutive active PKB/Akt protected HUVEC from death induced by zoledronate and TNF/IFNgamma. Phosphorylation of c-Src and activation of NF-kappaB were not affected by zoledronate. Clodronate had no effect on HUVEC adhesion, migration, and survival nor did it enhanced TNF cytotoxicity. Taken together these data demonstrate that zoledronate sensitizes endothelial cells to TNF-induced, caspase-independent programmed cell death and point to the FAK-PKB/Akt pathway as a novel zoledronate target. These results have potential implications to the clinical use of zoledronate as an anti-angiogenic or anti-cancer agent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bcl10, a caspase recruitment domain (CARD)-containing protein identified from a breakpoint in mucosa-associated lymphoid tissue (MALT) B lymphomas, is essential for antigen-receptor-mediated nuclear factor kappaB (NF-kappaB) activation in lymphocytes. We have identified a novel CARD-containing protein and interaction partner of Bcl10, named Carma1. Carma1 is predominantly expressed in lymphocytes and represents a new member of the membrane-associated guanylate kinase family. Carma1 binds Bcl10 via its CARD motif and induces translocation of Bcl10 from the cytoplasm into perinuclear structures. Moreover, expression of Carma1 induces phosphorylation of Bcl10 and activation of the transcription factor NF-kappaB. We propose that Carma1 is a crucial component of a novel Bcl10-dependent signaling pathway in T-cells that leads to the activation of NF-kappaB.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fas (CD95/Apo-1) ligand is a potent inducer of apoptosis and one of the major killing effector mechanisms of cytotoxic T cells. Thus, Fas ligand activity has to be tightly regulated, involving various transcriptional and post-transcriptional processes. For example, preformed Fas ligand is stored in secretory lysosomes of activated T cells, and rapidly released by degranulation upon reactivation. In this study, we analyzed the minimal requirements for activation-induced degranulation of Fas ligand. T cell receptor activation can be mimicked by calcium ionophore and phorbol ester. Unexpectedly, we found that stimulation with phorbol ester alone is sufficient to trigger Fas ligand release, whereas calcium ionophore is neither sufficient nor necessary. The relevance of this process was confirmed in primary CD4(+) and CD8(+) T cells and NK cells. Although the activation of protein kinase(s) was absolutely required for Fas ligand degranulation, protein kinase C or A were not involved. Previous reports have shown that preformed Fas ligand co-localizes with other markers of cytolytic granules. We found, however, that the activation-induced degranulation of Fas ligand has distinct requirements and involves different mechanisms than those of the granule markers CD63 and CD107a/Lamp-1. We conclude that activation-induced degranulation of Fas ligand in cytotoxic lymphocytes is differently regulated than other classical cytotoxic granule proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

MCT2 is the main neuronal monocarboxylate transporter essential for facilitating lactate and ketone body utilization as energy substrates. Our study reveals that treatment of cultured cortical neurons with insulin and IGF-1 led to a striking enhancement of MCT2 immunoreactivity in a time- and concentration-dependent manner. Surprisingly, neither insulin nor IGF-1 affected MCT2 mRNA expression, suggesting that regulation of MCT2 protein expression occurs at the translational rather than the transcriptional level. Investigation of the putative signalling pathways leading to translation activation revealed that insulin and IGF-1 induced p44- and p42 MAPK, Akt and mTOR phosphorylation. S6 ribosomal protein, a component of the translational machinery, was also strongly activated by insulin and IGF-1. Phosphorylation of p44- and p42 MAPK was blocked by the MEK inhibitor PD98058, while Akt phosphorylation was abolished by the PI3K inhibitor LY294002. Phosphorylation of mTOR and S6 was blocked by the mTOR inhibitor rapamycin. In parallel, it was observed that LY294002 and rapamycin almost completely blocked the effects of insulin and IGF-1 on MCT2 protein expression, whereas PD98059 and SB202190 (a p38K inhibitor) had no effect on insulin-induced MCT2 expression and only a slight effect on IGF-1-induced MCT2 expression. At the subcellular level, a significant increase in MCT2 protein expression within an intracellular pool was observed while no change at the cell surface was apparent. As insulin and IGF-1 are involved in synaptic plasticity, their effect on MCT2 protein expression via an activation of the PI3K-Akt-mTOR-S6K pathway might contribute to the preparation of neurons for enhanced use of nonglucose energy substrates following altered synaptic efficacy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Indirect evidence suggests that activity of pyruvate dehydrogenase (PDH) influences recovery of the myocardium after transient ischemia. The present study examined the relationship between postischemic injury and activity of PDH and the role of mitochondrial calcium uptake for observed changes in PDH activity. Isovolumically beating isolated rat hearts perfused with erythrocyte-enriched buffer containing glucose, palmitate, and insulin were submitted to either 20 or 35 min of no-flow ischemia. After 20 min of no-flow ischemia, hearts exhibited complete recovery of developed left ventricular pressure (DLVP). The proportion of myocardial PDH in the active state was modestly increased to 38% (compared with 13% in control hearts) without a change in glucose oxidation. In contrast, in hearts subjected to 35 min of no-flow ischemia (which exhibited poor recovery of DLVP), there was marked stimulation of glucose oxidation (+460%; P < 0.01) and pronounced increase in the active fraction of PDH to 72% (P < 0.01). Glycolytic flux was not significantly altered. Ruthenium red (6 microM) completely abolished the activation of PDH and the increase in glucose oxidation. The results indicate that variable stimulation of glucose oxidation during reperfusion is related to different degrees of activation of PDH, which depends on the severity of the ischemic injury. Activation of PDH seems to be mediated by myocardial calcium uptake.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mitogen-activated protein kinases (MAPKs), including p38 and c-Jun N-terminal kinase (JNK), have a key role in T cell receptor (TCR)-induced gene transcription but their precise mechanism of activation is not well understood. The findings of two recent papers provide new insight into the activation of p38 and JNK by the membrane-associated guanylate kinase (MAGUK) family members Dlgh1 and Carma1, respectively, and show how distinct MAGUK proteins control specific aspects of TCR-mediated MAPK activation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic stimulation of the renin-angiotensin system induces an elevation of blood pressure and the development of cardiac hypertrophy via the actions of its effector, angiotensin II. In cardiomyocytes, mitogen-activated protein kinases as well as protein kinase C isoforms have been shown to be important in the transduction of trophic signals. The Ca(2+)/calmodulin-dependent phosphatase calcineurin has also been suggested to play a role in cardiac growth. In the present report, we investigate possible cross-talks between calcineurin, protein kinase C, and mitogen-activated protein kinase pathways in controlling angiotensin II-induced hypertrophy. Angiotensin II-stimulated cardiomyocytes and mice with angiotensin II-dependent renovascular hypertension were treated with the calcineurin inhibitor cyclosporin A. Calcineurin, protein kinase C, and mitogen-activated protein kinase activations were determined. We show that cyclosporin A blocks angiotensin II-induced mitogen-activated protein kinase activation in cultured primary cardiomyocytes and in the heart of hypertensive mice. Cyclosporin A also inhibits specific protein kinase C isoforms. In vivo, cyclosporin A prevents the development of cardiac hypertrophy, and this effect appears to be independent of hemodynamic changes. These data suggest cross-talks between the calcineurin pathway, the protein kinase C, and the mitogen-activated protein kinase signaling cascades in transducing angiotensin II-mediated stimuli in cardiomyocytes and could provide the basis for an integrated model of cardiac hypertrophy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rad51 and its meiotic homolog Dmc1 are key proteins of homologous recombination in eukaryotes. These proteins form nucleoprotein complexes on single-stranded DNA that promote a search for homology and that perform DNA strand exchange, the two essential steps of genetic recombination. Previously, we demonstrated that Ca2+ greatly stimulates the DNA strand exchange activity of human (h) Rad51 protein (Bugreev, D. V., and Mazin, A. V. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 9988-9993). Here, we show that the DNA strand exchange activity of hDmc1 protein is also stimulated by Ca2+. However, the mechanism of stimulation of hDmc1 protein appears to be different from that of hRad51 protein. In the case of hRad51 protein, Ca2+ acts primarily by inhibiting its ATPase activity, thereby preventing self-conversion into an inactive ADP-bound complex. In contrast, we demonstrate that hDmc1 protein does not self-convert into a stable ADP-bound complex. The results indicate that activation of hDmc1 is mediated through conformational changes induced by free Ca2+ ion binding to a protein site that is distinct from the Mg2+.ATP-binding center. These conformational changes are manifested by formation of more stable filamentous hDmc1.single-stranded DNA complexes. Our results demonstrate a universal role of Ca2+ in stimulation of mammalian DNA strand exchange proteins and reveal diversity in the mechanisms of this stimulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PIDD (p53-induced protein with a death domain [DD]), together with the bipartite adapter protein RAIDD (receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a DD), is implicated in the activation of pro-caspase-2 in a high molecular weight complex called the PIDDosome during apoptosis induction after DNA damage. To investigate the role of PIDD in cell death initiation, we generated PIDD-deficient mice. Processing of caspase-2 is readily detected in the absence of PIDDosome formation in primary lymphocytes. Although caspase-2 processing is delayed in simian virus 40-immortalized pidd(-/-) mouse embryonic fibroblasts, it still depends on loss of mitochondrial integrity and effector caspase activation. Consistently, apoptosis occurs normally in all cell types analyzed, suggesting alternative biological roles for caspase-2 after DNA damage. Because loss of either PIDD or its adapter molecule RAIDD did not affect subcellular localization, nuclear translocation, or caspase-2 activation in high molecular weight complexes, we suggest that at least one alternative PIDDosome-independent mechanism of caspase-2 activation exists in mammals in response to DNA damage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: We explored the potential adverse effects of pro-atherogenic oxidised LDL-cholesterol particles on beta cell function. MATERIALS AND METHODS: Isolated human and rat islets and different insulin-secreting cell lines were incubated with human oxidised LDL with or without HDL particles. The insulin level was monitored by ELISA, real-time PCR and a rat insulin promoter construct linked to luciferase gene reporter. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Prolonged incubation with human oxidised LDL particles led to a reduction in preproinsulin expression levels, whereas the insulin level was preserved in the presence of native LDL-cholesterol. The loss of insulin production occurred at the transcriptional levels and was associated with an increase in activator protein-1 transcriptional activity. The rise in activator protein-1 activity resulted from activation of c-Jun N-terminal kinases (JNK, now known as mitogen-activated protein kinase 8 [MAPK8]) due to a subsequent decrease in islet-brain 1 (IB1; now known as MAPK8 interacting protein 1) levels. Consistent with the pro-apoptotic role of the JNK pathway, oxidised LDL also induced a twofold increase in the rate of beta cell apoptosis. Treatment of the cells with JNK inhibitor peptides or HDL countered the effects mediated by oxidised LDL. CONCLUSIONS/INTERPRETATION: These data provide strong evidence that oxidised LDL particles exert deleterious effects in the progression of beta cell failure in diabetes and that these effects can be countered by HDL particles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The enzyme activation-induced deaminase (AID) triggers antibody diversification in B cells by catalyzing deamination and consequently mutation of immunoglobulin genes. To minimize off-target deamination, AID is restrained by several regulatory mechanisms including nuclear exclusion, thought to be mediated exclusively by active nuclear export. Here we identify two other mechanisms involved in controlling AID subcellular localization. AID is unable to passively diffuse into the nucleus, despite its small size, and its nuclear entry requires active import mediated by a conformational nuclear localization signal. We also identify in its C terminus a determinant for AID cytoplasmic retention, which hampers diffusion to the nucleus, competes with nuclear import and is crucial for maintaining the predominantly cytoplasmic localization of AID in steady-state conditions. Blocking nuclear import alters the balance between these processes in favor of cytoplasmic retention, resulting in reduced isotype class switching.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The activation of pre-kininogenin to kininogenin (pre-kallikrein to kallikrein) is one of the steps in the series of reactions of a complex system, linked also to fibrinolysis and coagulation, that leads to kinin release in plasma (See Cochrane et al., 1976; Wuepper, 1976; Kaplan et al., 1976; Kaplan et al., 1976). For human plasma, a test using kaolin as activator and measuring kallikrein activity with the chromogenic substrate Chromozym PK (Nα-benzoyl-prolyl-phenylalanyl-arginyl-nitroanilide, Pentapharm, Basle) is routinely employed. The purpose of this paper is to further study the mechanism of this activation, by means of different activators and using as inhibitor hexadimethrine bromide (Polybrene). Besides kaolin, sulfated polysaccharides, such as heparin and cellulose sulfate are able to activate pre-kininogenin to kininogenin. Hexadimethrine as expected, inhibited the activation by heparin and also that by cellulose sulfate. The activation by kaolin however followed a different pattern suggesting, at least partially, a different mode of action of this activator. © 1979.