846 resultados para Environmental objective function
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
Muchas de las nuevas aplicaciones emergentes de Internet tales como TV sobre Internet, Radio sobre Internet,Video Streamming multi-punto, entre otras, necesitan los siguientes requerimientos de recursos: ancho de banda consumido, retardo extremo-a-extremo, tasa de paquetes perdidos, etc. Por lo anterior, es necesario formular una propuesta que especifique y provea para este tipo de aplicaciones los recursos necesarios para su buen funcionamiento. En esta tesis, proponemos un esquema de ingeniería de tráfico multi-objetivo a través del uso de diferentes árboles de distribución para muchos flujos multicast. En este caso, estamos usando la aproximación de múltiples caminos para cada nodo egreso y de esta forma obtener la aproximación de múltiples árboles y a través de esta forma crear diferentes árboles multicast. Sin embargo, nuestra propuesta resuelve la fracción de la división del tráfico a través de múltiples árboles. La propuesta puede ser aplicada en redes MPLS estableciendo rutas explícitas en eventos multicast. En primera instancia, el objetivo es combinar los siguientes objetivos ponderados dentro de una métrica agregada: máxima utilización de los enlaces, cantidad de saltos, el ancho de banda total consumido y el retardo total extremo-a-extremo. Nosotros hemos formulado esta función multi-objetivo (modelo MHDB-S) y los resultados obtenidos muestran que varios objetivos ponderados son reducidos y la máxima utilización de los enlaces es minimizada. El problema es NP-duro, por lo tanto, un algoritmo es propuesto para optimizar los diferentes objetivos. El comportamiento que obtuvimos usando este algoritmo es similar al que obtuvimos con el modelo. Normalmente, durante la transmisión multicast los nodos egresos pueden salir o entrar del árbol y por esta razón en esta tesis proponemos un esquema de ingeniería de tráfico multi-objetivo usando diferentes árboles para grupos multicast dinámicos. (en el cual los nodos egresos pueden cambiar durante el tiempo de vida de la conexión). Si un árbol multicast es recomputado desde el principio, esto podría consumir un tiempo considerable de CPU y además todas las comuicaciones que están usando el árbol multicast serán temporalmente interrumpida. Para aliviar estos inconvenientes, proponemos un modelo de optimización (modelo dinámico MHDB-D) que utilice los árboles multicast previamente computados (modelo estático MHDB-S) adicionando nuevos nodos egreso. Usando el método de la suma ponderada para resolver el modelo analítico, no necesariamente es correcto, porque es posible tener un espacio de solución no convexo y por esta razón algunas soluciones pueden no ser encontradas. Adicionalmente, otros tipos de objetivos fueron encontrados en diferentes trabajos de investigación. Por las razones mencionadas anteriormente, un nuevo modelo llamado GMM es propuesto y para dar solución a este problema un nuevo algoritmo usando Algoritmos Evolutivos Multi-Objetivos es propuesto. Este algoritmo esta inspirado por el algoritmo Strength Pareto Evolutionary Algorithm (SPEA). Para dar una solución al caso dinámico con este modelo generalizado, nosotros hemos propuesto un nuevo modelo dinámico y una solución computacional usando Breadth First Search (BFS) probabilístico. Finalmente, para evaluar nuestro esquema de optimización propuesto, ejecutamos diferentes pruebas y simulaciones. Las principales contribuciones de esta tesis son la taxonomía, los modelos de optimización multi-objetivo para los casos estático y dinámico en transmisiones multicast (MHDB-S y MHDB-D), los algoritmos para dar solución computacional a los modelos. Finalmente, los modelos generalizados también para los casos estático y dinámico (GMM y GMM Dinámico) y las propuestas computacionales para dar slución usando MOEA y BFS probabilístico.
Resumo:
This work presents the application of a multiobjective evolutionary algorithm (MOEA) for optimal power flow (OPF) solution. The OPF is modeled as a constrained nonlinear optimization problem, non-convex of large-scale, with continuous and discrete variables. The violated inequality constraints are treated as objective function of the problem. This strategy allows attending the physical and operational restrictions without compromise the quality of the found solutions. The developed MOEA is based on the theory of Pareto and employs a diversity-preserving mechanism to overcome the premature convergence of algorithm and local optimal solutions. Fuzzy set theory is employed to extract the best compromises of the Pareto set. Results for the IEEE-30, RTS-96 and IEEE-354 test systems are presents to validate the efficiency of proposed model and solution technique.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
RAF is a bio-energetic descriptive model integrates with MAD model to support Integrated Farm Management. RAF model aimed to enhancing economical, social and environmental sustainability of farm production in terms of energy via convert energy crops and animal manure to biogas and digestate (bio-fertilizers) by anaerobic digestion technologies, growing and breeding practices. The user defines farm structure in terms of present crops, livestock and market prices and RAF model investigates the possibilities of establish on-farm biogas system (different anaerobic digestion technologies proposed for different scales of farms in terms of energy requirements) according to budget and sustainability constraints to reduce the dependence on fossil fuels. The objective function of RAF (Z) is optimizing the total net income of farm (maximizing income and minimizing costs) for whole period which is considered by the analysis. The main results of this study refers to the possibility of enhancing the exploitation of the available Italian potentials of biogas production from on-farm production of energy crops and livestock manure feedstock by using the developed mathematical model RAF integrates with MAD to presents reliable reconcile between farm size, farm structure and on-farm biogas systems technologies applied to support selection, applying and operating of appropriate biogas technology at any farm under Italian conditions.
EPANET Input Files of New York tunnels and Pacific City used in a metamodel-based optimization study
Resumo:
Metamodels have proven be very useful when it comes to reducing the computational requirements of Evolutionary Algorithm-based optimization by acting as quick-solving surrogates for slow-solving fitness functions. The relationship between metamodel scope and objective function varies between applications, that is, in some cases the metamodel acts as a surrogate for the whole fitness function, whereas in other cases it replaces only a component of the fitness function. This paper presents a formalized qualitative process to evaluate a fitness function to determine the most suitable metamodel scope so as to increase the likelihood of calibrating a high-fidelity metamodel and hence obtain good optimization results in a reasonable amount of time. The process is applied to the risk-based optimization of water distribution systems; a very computationally-intensive problem for real-world systems. The process is validated with a simple case study (modified New York Tunnels) and the power of metamodelling is demonstrated on a real-world case study (Pacific City) with a computational speed-up of several orders of magnitude.
Resumo:
La planificación de la movilidad sostenible urbana es una tarea compleja que implica un alto grado de incertidumbre debido al horizonte de planificación a largo plazo, la amplia gama de paquetes de políticas posibles, la necesidad de una aplicación efectiva y eficiente, la gran escala geográfica, la necesidad de considerar objetivos económicos, sociales y ambientales, y la respuesta del viajero a los diferentes cursos de acción y su aceptabilidad política (Shiftan et al., 2003). Además, con las tendencias inevitables en motorización y urbanización, la demanda de terrenos y recursos de movilidad en las ciudades está aumentando dramáticamente. Como consecuencia de ello, los problemas de congestión de tráfico, deterioro ambiental, contaminación del aire, consumo de energía, desigualdades en la comunidad, etc. se hacen más y más críticos para la sociedad. Esta situación no es estable a largo plazo. Para enfrentarse a estos desafíos y conseguir un desarrollo sostenible, es necesario considerar una estrategia de planificación urbana a largo plazo, que aborde las necesarias implicaciones potencialmente importantes. Esta tesis contribuye a las herramientas de evaluación a largo plazo de la movilidad urbana estableciendo una metodología innovadora para el análisis y optimización de dos tipos de medidas de gestión de la demanda del transporte (TDM). La metodología nueva realizado se basa en la flexibilización de la toma de decisiones basadas en utilidad, integrando diversos mecanismos de decisión contrariedad‐anticipada y combinados utilidad‐contrariedad en un marco integral de planificación del transporte. La metodología propuesta incluye dos aspectos principales: 1) La construcción de escenarios con una o varias medidas TDM usando el método de encuesta que incorpora la teoría “regret”. La construcción de escenarios para este trabajo se hace para considerar específicamente la implementación de cada medida TDM en el marco temporal y marco espacial. Al final, se construyen 13 escenarios TDM en términos del más deseable, el más posible y el de menor grado de “regret” como resultado de una encuesta en dos rondas a expertos en el tema. 2) A continuación se procede al desarrollo de un marco de evaluación estratégica, basado en un Análisis Multicriterio de Toma de Decisiones (Multicriteria Decision Analysis, MCDA) y en un modelo “regret”. Este marco de evaluación se utiliza para comparar la contribución de los distintos escenarios TDM a la movilidad sostenible y para determinar el mejor escenario utilizando no sólo el valor objetivo de utilidad objetivo obtenido en el análisis orientado a utilidad MCDA, sino también el valor de “regret” que se calcula por medio del modelo “regret” MCDA. La función objetivo del MCDA se integra en un modelo de interacción de uso del suelo y transporte que se usa para optimizar y evaluar los impactos a largo plazo de los escenarios TDM previamente construidos. Un modelo de “regret”, llamado “referencedependent regret model (RDRM)” (modelo de contrariedad dependiente de referencias), se ha adaptado para analizar la contribución de cada escenario TDM desde un punto de vista subjetivo. La validación de la metodología se realiza mediante su aplicación a un caso de estudio en la provincia de Madrid. La metodología propuesta define pues un procedimiento técnico detallado para la evaluación de los impactos estratégicos de la aplicación de medidas de gestión de la demanda en el transporte, que se considera que constituye una herramienta de planificación útil, transparente y flexible, tanto para los planificadores como para los responsables de la gestión del transporte. Planning sustainable urban mobility is a complex task involving a high degree of uncertainty due to the long‐term planning horizon, the wide spectrum of potential policy packages, the need for effective and efficient implementation, the large geographical scale, the necessity to consider economic, social, and environmental goals, and the traveller’s response to the various action courses and their political acceptability (Shiftan et al., 2003). Moreover, with the inevitable trends on motorisation and urbanisation, the demand for land and mobility in cities is growing dramatically. Consequently, the problems of traffic congestion, environmental deterioration, air pollution, energy consumption, and community inequity etc., are becoming more and more critical for the society (EU, 2011). Certainly, this course is not sustainable in the long term. To address this challenge and achieve sustainable development, a long‐term perspective strategic urban plan, with its potentially important implications, should be established. This thesis contributes on assessing long‐term urban mobility by establishing an innovative methodology for optimizing and evaluating two types of transport demand management measures (TDM). The new methodology aims at relaxing the utility‐based decision‐making assumption by embedding anticipated‐regret and combined utilityregret decision mechanisms in an integrated transport planning framework. The proposed methodology includes two major aspects: 1) Construction of policy scenarios within a single measure or combined TDM policy‐packages using the survey method incorporating the regret theory. The purpose of building the TDM scenarios in this work is to address the specific implementation in terms of time frame and geographic scale for each TDM measure. Finally, 13 TDM scenarios are built in terms of the most desirable, the most expected and the least regret choice by means of the two‐round Delphi based survey. 2) Development of the combined utility‐regret analysis framework based on multicriteria decision analysis (MCDA). This assessment framework is used to compare the contribution of the TDM scenario towards sustainable mobility and to determine the best scenario considering not only the objective utility value obtained from the utilitybased MCDA, but also a regret value that is calculated via a regret‐based MCDA. The objective function of the utility‐based MCDA is integrated in a land use and transport interaction model and is used for optimizing and assessing the long term impacts of the constructed TDM scenarios. A regret based model, called referente dependent regret model (RDRM) is adapted to analyse the contribution of each TDM scenario in terms of a subjective point of view. The suggested methodology is implemented and validated in the case of Madrid. It defines a comprehensive technical procedure for assessing strategic effects of transport demand management measures, which can be useful, transparent and flexible planning tool both for planners and decision‐makers.
Resumo:
En general, la distribución de una flota de vehículos que recorre rutas fijas no se realiza completamente en base a criterios objetivos, primando otros aspectos más difícilmente cuantificables. El análisis apropiado debería tener en consideración la variabilidad existente entre las diferentes rutas dentro de una misma ciudad para así determinar qué tecnología es la que mejor se adapta a las características de cada itinerario. Este trabajo presenta una metodología para optimizar la asignación de una flota de vehículos a sus rutas, consiguiendo reducir el consumo y las emisiones contaminantes. El método propuesto está organizado según el siguiente procedimiento: - Registro de las características cinemáticas de los vehículos que recorren un conjunto representativo de rutas. - Agrupamiento de las líneas en conglomerados de líneas similares empleando un algoritmo jerárquico que optimice el índice de semejanza entre rutas obtenido mediante contraste de hipótesis de las variables representativas. - Generación de un ciclo cinemático específico para cada conglomerado. - Tipificación de variables macroscópicas que faciliten la clasificación de las restantes líneas utilizando una red neuronal entrenada con la información recopilada en las rutas medidas. - Conocimiento de las características de la flota disponible. - Disponibilidad de un modelo que estime, según la tecnología del vehículo, el consumo y las emisiones asociados a las variables cinemáticas de los ciclos. - Desarrollo de un algoritmo de reasignación de vehículos que optimice una función objetivo dependiente de las emisiones. En el proceso de optimización de la flota se plantean dos escenarios de gran trascendencia en la evaluación ambiental, consistentes en minimizar la emisión de dióxido de carbono y su impacto como gas de efecto invernadero (GEI), y alternativamente, la producción de nitróxidos, por su influencia en la lluvia ácida y en la formación de ozono troposférico en núcleos urbanos. Además, en ambos supuestos se introducen en el problema restricciones adicionales para evitar que las emisiones de las restantes sustancias superen los valores estipulados según la organización de la flota actualmente realizada por el operador. La metodología ha sido aplicada en 160 líneas de autobús de la EMT de Madrid, conociéndose los datos cinemáticos de 25 rutas. Los resultados indican que, en ambos supuestos, es factible obtener una redistribución de la flota que consiga reducir significativamente la mayoría de las sustancias contaminantes, evitando que, en contraprestación, aumente la emisión de cualquier otro contaminante. ABSTRACT In general, the distribution of a fleet of vehicles that travel fixed routes is not usually implemented on the basis of objective criteria, thus prioritizing on other features that are more difficult to quantify. The appropriate analysis should consider the existing variability amongst the different routes within the city in order to determine which technology adapts better to the peculiarities of each itinerary. This study proposes a methodology to optimize the allocation of a fleet of vehicles to the routes in order to reduce fuel consumption and pollutant emissions. The suggested method is structured in accordance with the following procedure: - Recording of the kinematic characteristics of the vehicles that travel a representative set of routes. - Grouping of the lines in clusters of similar routes by utilizing a hierarchical algorithm that optimizes the similarity index between routes, which has been previously obtained by means of hypothesis contrast based on a set of representative variables. - Construction of a specific kinematic cycle to represent each cluster of routes. - Designation of macroscopic variables that allow the classification of the remaining lines using a neural network trained with the information gathered from a sample of routes. - Identification and comprehension of the operational characteristics of the existing fleet. - Availability of a model that evaluates, in accordance with the technology of the vehicle, the fuel consumption and the emissions related with the kinematic variables of the cycles. - Development of an algorithm for the relocation of the vehicle fleet by optimizing an objective function which relies on the values of the pollutant emissions. Two scenarios having great relevance in environmental evaluation are assessed during the optimization process of the fleet, these consisting in minimizing carbon dioxide emissions due to its impact as greenhouse gas (GHG), and alternatively, the production of nitroxides for their influence on acid rain and in the formation of tropospheric ozone in urban areas. Furthermore, additional restrictions are introduced in both assumptions in order to prevent that emission levels for the remaining substances exceed the stipulated values for the actual fleet organization implemented by the system operator. The methodology has been applied in 160 bus lines of the EMT of Madrid, for which kinematic information is known for a sample consisting of 25 routes. The results show that, in both circumstances, it is feasible to obtain a redistribution of the fleet that significantly reduces the emissions for the majority of the pollutant substances, while preventing an alternative increase in the emission level of any other contaminant.
Resumo:
In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.
Resumo:
The first step in conservation planning is to identify objectives. Most stated objectives for conservation, such as to maximize biodiversity outcomes, are too vague to be useful within a decision-making framework. One way to clarify the issue is to define objectives in terms of the risk of extinction for multiple species. Although the assessment of extinction risk for single species is common, few researchers have formulated an objective function that combines the extinction risks of multiple species. We sought to translate the broad goal of maximizing the viability of species into explicit objectives for use in a decision-theoretic approach to conservation planning. We formulated several objective functions based on extinction risk across many species and illustrated the differences between these objectives with simple examples. Each objective function was the mathematical representation of an approach to conservation and emphasized different levels of threat Our objectives included minimizing the joint probability of one or more extinctions, minimizing the expected number of extinctions, and minimizing the increase in risk of extinction from the best-case scenario. With objective functions based on joint probabilities of extinction across species, any correlations in extinction probabilities bad to be known or the resultant decisions were potentially misleading. Additive objectives, such as the expected number of extinctions, did not produce the same anomalies. We demonstrated that the choice of objective function is central to the decision-making process because alternative objective functions can lead to a different ranking of management options. Therefore, decision makers need to think carefully in selecting and defining their conservation goals.
Resumo:
2000 Mathematics Subject Classification: 90C25, 68W10, 49M37.
Resumo:
Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.
Resumo:
Many classical as well as modern optimization techniques exist. One such modern method belonging to the field of swarm intelligence is termed ant colony optimization. This relatively new concept in optimization involves the use of artificial ants and is based on real ant behavior inspired by the way ants search for food. In this thesis, a novel ant colony optimization technique for continuous domains was developed. The goal was to provide improvements in computing time and robustness when compared to other optimization algorithms. Optimization function spaces can have extreme topologies and are therefore difficult to optimize. The proposed method effectively searched the domain and solved difficult single-objective optimization problems. The developed algorithm was run for numerous classic test cases for both single and multi-objective problems. The results demonstrate that the method is robust, stable, and that the number of objective function evaluations is comparable to other optimization algorithms.