25 resultados para Enna
Resumo:
Venomous species have evolved cocktails of bioactive peptides to facilitate prey capture. Given their often exquisite potency and target selectivity, venom peptides provide unique biochemical tools for probing the function of membrane proteins at the molecular level. in the field of the nicotinic acetylcholine receptors (nAChRs), the subtype specific snake alpha-neurotoxins and cone snail alpha-conotoxins have been widely used to probe receptor structure and function in native tissues and recombinant systems. However, only recently has it been possible to generate an accurate molecular view of these nAChR-toxin interactions. Crystal structures of AChBP, a homologue of the nAChR ligand binding domain, have now been solved in complex with alpha-cobratoxin, alpha-conotoxin PnIA and alpha-conotoxin Iml. The orientation of all three toxins in the ACh binding site confirms many of the predictions obtained from mutagenesis and docking simulations on homology models of mammalian nAChR. The precise understanding of the molecular determinants of these complexes is expected to contribute to the development of more selective nAChR modulators. In this commentary, we review the structural data on nAChR-toxin interactions and discuss their implications for the design of novel ligands acting at the nAChR. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The biguanides are derivatives of the compound biguanide (guanylguanidine) that exert a blood glucose-lowering effect in type 2 (non-insulin dependent) diabetes mellitus. The main biguanides are metformin (dimethylbiguanide) and phenformin (phenethylbiguanide), which were described in 1957 and buformin (butylbiguaninde), which was described in 1958 .... © 2007 Elsevier Inc. All rights reserved.
Resumo:
Ciglitazone was the first antidiabetic thiazolidinedione to be described in detail .... © 2007 Elsevier Inc.
Resumo:
Metformin is the only biguanide antihyperglycemic agent used in the treatment of type 2 (non-insulin dependent) diabetes mellitus. It counters insulin resistance partly by increased insulin action (so-called insulin sensitizing effects) and partly via actions that are not directly insulin dependent. Metformin reduces hepatic glucose output by suppression of gluconeogenesis and glycogenolysis. In skeletal muscle, metformin increases insulin-mediated glucose uptake and glycogen storage. Other actions of metformin that contribute to its blood glucose-lowering effect are reduced fatty acid oxidation and increased glucose turnover, the latter occurring particularly in the splanchnic bed .... © 2007 Copyright © 2007 Elsevier Inc.
Resumo:
Pioglitazone is a thiazolidinedione (TZD) antihyperglycemic agent introduced in 1999 for the treatment of type 2 (non-insulin dependent) diabetes mellitus. Another TZD, rosiglitazone, is also used in the treatment of type 2 diabetes. Troglitazone has been withdrawn from clinical use, and other TZDs, such as ciglitazone, have not proceeded into clinical use. Pioglitazone, like other TZDs, improves insulin action mainly by activation of the nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Peroxisome proliferator-activated receptor-gamma is most strongly expressed in adipose tissue and weakly expressed in liver and skeletal muscle, and activation of PPAR-gammain these tissues reinforces the effects of insulin. Pioglitazone may exert effects on other tissues that express PPAR-gamma ..... © 2007 Copyright © 2007 Elsevier Inc. All rights reserved.
Resumo:
Thiazolidinediones (TZDs), also termed "glitazones", are used as antidiabetic agents for the treatment of type 2 (non-insulin dependent) diabetes mellitus. They activate the nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma). This increases the transcription of various insulin-sensitive genes, improving insulin action and lowering blood glucose concentrations. TZDs currently in clinical use for the treatment of type 2 diabetes are rosiglitazone and pioglitazone. Troglitazone was withdrawn due to hepatotoxicity. Other TZDs (e.g. ciglitazone) have been studied preclinically, but not introduced into clinical use. TZDs do not cause severe hypoglycemia, hence they are regarded as antihyperglycemic (rather than hypoglycemic) agents .... © 2007 Elsevier Inc. All rights reserved..