970 resultados para Engenharia do plasma


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the influence of the poly (ethylene terephthalate) textile and films surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The plasma surface polymeric modification has been used for many researchs, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, the treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min, using oxygen plasma alternating the treatment time 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) which was varied only the gas composition from 0 to 100% leaving the treatment time remaining constant to all treatment (10 min). The plasma treatment was characterized in-situ with Optics Emission Spectroscopy (OES), and the samples was characterized by contact angle, surface tension, Through Capillary tests, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, scanning electronic Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that oxygen treated fabrics presented high wettability, due to the hydrophilic groups incorporation onto the surface formed through spputering of carbon atoms. For the nitrogen atmosphere, there is the a film deposition of amine groups. Treatment with small oxygen concentration in the mixture with nitrogen has a higher spputered species of the samples

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma diagnostics by Optical Emission Spectroscopy were performed for electrical discharge in three gas mixture respecting the combinations z N2 y Ar x H2, z N2 y Ar x O2 e z N2 y Ar x CH4, in which the indexes z and y systematically vary from 1 to 4 and x varies from 0 to 4, every one has dimension SCCM, resulting in 80 combinations. From the all obtained spectrums, the species CH (387,1 nm), N2+ (391,4 nm), Hβ (486,1 nm), Hα (656,3 nm), Ar (750,4 nm), O (777,4 nm) e O (842,6 nm) were analyzed because of their abundance and importance on the kinetic of reaction from the plasma to surface, besides their high dependences on the gases flows. Particularly interesting z, y and x combinations were chosen in order to study the influence of active species on the surface modification during the thermochemical treatment. From the mixtures N2 Ar O2 e N2 Ar CH4 were chosen three peculiar proportions which presented luminous intensity profile with unexpected maximum or minimum values, denominated as plasma anomaly. Those plasma concentrations were utilized as atmosphere of titanium treatment maintaining constant the control parameters pressure and temperature. It has been verified a relation among luminous intensity associated to N2+ and roughness, nanohardness and O atoms diffusion into the crystalline lattice of treated titanium and it has been seen which those properties becomes more intense precisely in the higher points found in the optical profile associated to the N2+ specie. Those parameters were verified for the mixture which involved O2 gas. For the mixture which involves CH4 gas, the relation was determinate by roughness, number of nitrogen and carbon atoms diffused into the titanium structure which presented direct proportionality with the luminous intensity referent to the N2+ and CH. It has been yet studied the formation of TiCN phases on the surface which presented to be essentially directly proportional to the increasing of the CH specie and inversely proportional to the increasing of the specie N2+

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polyester film has a vast application field, due some properties that are inherent of this kind of material such as, good mechanical resistance, chemical resistance to acids and bases and low production cost. However, this material has some limitations as low superficial tension, flat surface, low affinity to dyers, and poor adhesion which impede the use of the same ones for some finality as good wettability. Among the existent techniques to increase the superficial tension, plasma as energy source is the more promising technique, because of their versatility and for not polluting the environment. The plasma surface polymeric modification has been used for many researchers, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, polyester films were treated with oxygen plasma varying the treatment time from 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) varying the percentage of each gas the mixture from 0 to 100%, the treatment time remaining constant to all treatments (10 min). After plasma treatment the samples were characterized by contact angle, surface tension, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, with the aim to study the wettability increase of treated polyester films as its variables. In the (O2/N2) plasma treatment of polyester films can be observed an increase of superficial roughness superior to those treated by O2 plasma. By the other hand, the chemical modification through the implantation of polar groups at the surface is obtained more easily using O2 plasma treatment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the influence of the poly (ethylene terephthalate) textile surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min. Other parameters, such as working gas composition and treatment time, were modified as the following: to the O2 plasma modified samples only the treatment time was changed (10, 20, 30, 40, 50 and 60 minutes). To the plasma with O2 and N2 only the chemical concentrations were changed. Through Capillary tests (vertical) an increase in textile wettability was observed as well as its influence on aging time and its consequence on wettability. The surface functional groups created after plasma treatments were investigated using X-ray Photoelectron Spectroscopy (XPS). The surface topography was examined by scanning electron microscope (SEM)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, in the plastic industry are used mills that accomplish the recycling of residues generated in the production of its components. These mills contain cut sheets that suffer accelerated wear, once they are submitted constantly to the tribologic efforts, decreasing its useful life. To reduce this problem, it s used noble steels or takes place superficial treatments. The ionic nitriding process presents some limitations related to the uniformity of the layer in pieces with complex geometry, committing its application in pieces as knives, head offices, engagements, etc. However, the new technique of nitriding in cathodic cage eliminates some problems, as the restrictions rings, inherent to the conventional ionic nitriding. In present work, was studied the use viabilization of steels less noble, as SAE 1020, SAE 4320 and SAE 4340, nitreded by two different techniques, to substitute the AISI 01 steels, usually used in the cut knifes fabrication, seeking to reduce the costs and at the sane time to increase the useful life of these knifes. The steel most viable was the SAE 4340, nitrided in cathodic cage, because it presented uniformity in thickness and in the hardness of the layer, besides of increased 58% in the average its useful life

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat transfer between plasma and a solid occurs mostly due the radiation and the collision of the particles on the material surface, heating the material from the surface to the bulk. The thermal gradient inside the sample depends of the rate of particles collisions and thermal conductivity of the solid. In order to study that effect, samples of AISI M35 steel, with 9,5 mm X 3,0 mm (diameter X thickness) were quenched in resistive furnace and tempereds in plasma using the plane configuration and hollow cathode, working with pressures of 4 and 10 mbar respectively. Analyzing the samples microstructure and measuring the hardness along the transversal profile, it was possible to associate the tempered temperature evaluating indirectly the thermal profile. This relation was obtained by microstructural analyzes and through the hardness curve x tempered sample temperature in resistive furnace, using temperatures of 500, 550, 600, 650 and 700°C. The microstructural characterization of the samples was obtained by the scanning electron microscopy, optic microscopy and X-ray diffraction. It was verified that all samples treated in plasma presented a superficial layer, denominated affected shelling zone, wich was not present in the samples treated in resistive furnace. Moreover, the samples that presented larger thermal gradient were treated in hollow cathode with pressure of 4 mbar

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic tantalum has a high commercial value due to intrinsic properties like excellent ductility, corrosion resistance, high melt and boiling points and good electrical and thermal conductivities. Nowadays, it is mostly used in the manufacture of capacitors, due to excellent dielectric properties of its oxides. In the nature, tantalum occurs in the form of oxide and it is extracted mainly from tantalite-columbite ores. The tantalum is usually produced by the reduction of its oxide, using reductants like carbon, silicon, calcium, magnesium and aluminum. Among these techniques, the aluminothermic reduction has been used as the industrial method to produce niobium, tantalum and their alloys, due to the easy removal of the Al and Al2O3 of the system, easing further refining. In conventional aluminothermic reduction an electrical resistance is used to trigger the reaction. This reaction self-propagates for all the volume of material. In this work, we have developed a novel technique of aluminothermic reduction that uses the hydrogen plasma to trigger the reaction. The results obtained by XRD, SEM and EDS show that is possible to obtain a compound rich in tantalum through this technique of aluminothermic reduction in the plasma reactor

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work was used a plasma torch of non transferred arc with argon as work gas, using a power supply with maximum DC current of 250 A and voltage of 30 V to activate the plasma and keep it switched on. The flame temperature was characterized by optical emission spectroscopy, through Boltzmann-plot-method. The torch has been used like igniter in the aluminothermic reduction of the mixture tantalum oxide and aluminum, seeking to obtain metallic tantalum. In heating of the reagents only one particle will be considered to study interactions between plasma-particle, seeking to determinate its fusion and residence time. The early powders were characterized by laser granulometry, scanning electron microscopy (SEM) and X-ray diffraction analysis. The final product of this reaction was characterized by SEM and X-ray diffraction. Crystallite size was calculated by the Scherrer equation and microdeformation was determined using Willamsom-Hall graph. With Rietveld method was possible to quantify the percentile in weight of the products obtained in the aluminothermic reaction. Semi-quantitative chemical analysis (EDS) confirmed the presence of metallic tantalum and Al2O3 as products of the reduction. As was waited the particle size of the metallic tantalum produced, presents values in nanometric scale due the short cooling time of those particles during the process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, it has been investigated the influence of silver film deposition onto 100% polyester woven and non-woven, on the survival of Escherichia coli and Staphylococcus aureus in contact with these surfaces. The treatment was performedin a chamber containing the working gas at low pressure (~ 10-2 mbar). Some process parameters such as as voltage: 470 V; pressure: 10-2 mbar; current : 0.40 A and gas flow: 6 and 10 cm3/min were kept constant. For the treatments with purêargon plasma using a flow of 6 and 10 cm3/min, different treatment times were evaluated, such as, 10 , 20, 30, 40, 50 and 60 minutes. Contact angle (sessile drop), measurements were used to determine the surface tension of the treated fabrics and its influence on the bacteria grow as weel as the possibilities of a biofilm formation. The formation of a silver film, as well as the amount of this element was verified byEDX technique. The topography was observed through scanning electron microscopy (SEM) to determine the size of silver grains formed on the surfaces of the fabric and assess homogeneity of treatment. The X-ray diffraction (XRD) was used to analyze the structure of silver film deposition. The woven fabric treatments enabled the formation of silver particulate films with particle size larger than the non-woven fabrics. With respect to bacterial growth, all fabrics were shown to be bactericidal for Staphylococcus aureus (S. aureus), while for the Escherichia coli (E. coli), the best results were found for the non-woven fabric (TNT) treated with a flow of 10 cm3/min to both bacteria

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional processes for treatment of hazardous waste are questionable for it generates other wastes that adversely affect people s health. As an attempt to minimize these problems, it was developed a system for treatment of hazardous waste by thermal plasma, a more appropriate technology since it produces high temperatures, preventing the formation of toxic pollutants to human beings. The present work brings out a solution of automation for this plant. The system has local and remote monitoring resources to ensure the operators security as well as the process itself. A special attention was given to the control of the main reactor temperature of the plant as it is the place where the main processing occurs and because it presents a complex mathematical model. To this, it was employed cascaded controls based on Fuzzy logic. A process computer, with a particular man-machine interface (MMI), provides information and controls of the plant to the operator, including by Internet. A compact PLC module is in charge of the central element of management automation and plant control which receives information from sensors, and sends it to the MMI

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the study, the analysis, the project methodology and the constructive details of a high frequency DC/AC resonant series converter using sequential commutation techniques for the excitation of an inductive coupled thermal plasma torch. The aim of this thesis is to show the new modulation technique potentialities and to present a technological option for the high-frequency electronic power converters development. The resonant converter operates at 50 kW output power under a 400 kHz frequency and it is constituted by inverter cells using ultra-fast IGBT devices. In order to minimize the turn-off losses, the inverter cells operates in a ZVS mode referred by a modified PLL loop that maintains this condition stable, despite the load variations. The sequential pulse gating command strategy used it allows to operate the IGBT devices on its maximum power limits using the derating and destressing current scheme, as well as it propitiates a frequency multiplication of the inverters set. The output converter is connected to a series resonant circuit constituted by the applicator ICTP torch, a compensation capacitor and an impedance matching RF transformer. At the final, are presented the experimental results and the many tests achieved in laboratory as form to validate the proposed new technique

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the development of an experimental study on a power supply of high frequency that provides the toch plasmica to be implemented in PLASPETRO project, which consists of two static converters developed by using Insulated Gate Bipolar Transistor (IGBT). The drivers used to control these keys are triggered by Digital Signal Processor (DSP) through optical fibers to reduce problems with electromagnetic interference (EMI). The first stage consists of a pre-regulator in the form of an AC to DC converter with three-phase boost power factor correction which is the main theme of this work, while the second is the source of high frequency itself. A series-resonant inverter consists of four (4) cell inverters operating in a frequency around 115 kHz each one in soft switching mode, alternating itself to supply the load (plasma torch) an alternating current with a frequency of 450 kHz. The first stage has the function of providing the series-resonant inverter a DC voltage, with the value controlled from the power supply provided by the electrical system of the utility, and correct the power factor of the system as a whole. This level of DC bus voltage at the output of the first stage will be used to control the power transferred by the inverter to the load, and it may vary from 550 VDC to a maximum of 800 VDC. To control the voltage level of DC bus driver used a proportional integral (PI) controller and to achieve the unity power factor it was used two other proportional integral currents controllers. Computational simulations were performed to assist in sizing and forecasting performance. All the control and communications needed to stage supervisory were implemented on a DSP

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work discusses the design of a transformer used in a plant plasma. This plant, which is being developed in UFRN, will be used in the treatment of waste. It consists basically of a radio frequency power supply and a inductive plasma torch. The transformer operates at the nominal frequency of 400 kHz, with 50 kW, allowing the adaptation of impedance between the power supply and torch. To develop the project, a study was done on the fabrication technologies and physical effects on the frequency of operation. This was followed by the modeling of this transformer. Finally, simulations and tests were conducted to validate the design