978 resultados para Energy variations
Resumo:
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti’s reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Resumo:
In this paper, a wind energy conversion system interfaced to the grid using a dual inverter is proposed. One of the two inverters in the dual inverter is connected to the rectified output of the wind generator while the other is directly connected to a battery energy storage system (BESS). This approach eliminates the need for an additional dc-dc converter and thus reduces power losses, cost, and complexity. The main issue with this scheme is uncorrelated dynamic changes in dc-link voltages that results in unevenly distributed space vectors. A detailed analysis on the effects of these variations is presented in this paper. Furthermore, a modified modulation technique is proposed to produce undistorted currents even in the presence of unevenly distributed and dynamically changing space vectors. An analysis on the battery charging/discharging process and maximum power point tracking of the wind turbine generator is also presented. Simulation and experimental results are presented to verify the efficacy of the proposed modulation technique and battery charging/discharging process.
Resumo:
Microscopic surface diffusivity theory based on atomic ionization energy concept is developed to explain the variations of the atomic and displacement polarizations with respect to the surface diffusion activation energy of adatoms in the process of self-assembly of quantum dots on plasma-exposed surfaces. These polarizations are derived classically, while the atomic polarization is quantized to obtain the microscopic atomic polarizability. The surface diffusivity equation is derived as a function of the ionization energy. The results of this work can be used to fine-tune the delivery rates of different adatoms onto nanostructure growth surfaces and optimize the low-temperature plasma based nanoscale synthesis processes.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.
Resumo:
OBJECTIVE To monitor the seasonal body composition alterations in 18 lightweight rowers (six females, 12 males) across a rowing season incorporating preseason, early competition, competition, and postseason. METHODS Subject age was 23.1 (SD 4.5) years, height 170.8 (5.6) cm (female, 23.5 (3.5) years, 180.5 (2.7) cm (male). Body weight, fat mass, and fat-free mass (FFM) were assessed using dual energy x ray absorptiometry (DXA-L Lunar) and skinfold techniques. Weight control techniques were documented before major regattas by a questionnaire. RESULTS Female body weight was reduced from 61.3 (2.9) to 57.0 (1.1) kg (5.9%), while male body weight was reduced from 75.6 (3.1) to 69.8 (1.6) kg (7.8%) preseason to competition season respectively. These body weight reductions were mirrored by a significant reduction in fat mass as indicated by the sum of skinfolds [female seven sites: 80.9 (8.1) to 68.2 (11.8) mm; male eight sites: 54.2 (8.7) to 41.8 (4.8) mm], percentage body fat [female 22.1 (1.0) to 19.7 (2.4)%; male 10.0 (0.9) to 7.8 (0.8)%], and total fat [female 12.5 (5.2) to 10.9 (1.4) kg; male 7.3 (1.9) to 5.6 (1.8) kg] (DXA). In contrast, no changes were observed in FFM despite a season of intensive rowing training. Seasonal body weight control was achieved through reduced total energy and dietary fat intakes. Acute body weight reductions were achieved by exercise in 73.3% of participants, food restriction in 71.4%, and fluid restrictions in 62.9%. CONCLUSIONS Seasonal body weight alterations in lightweight rowers are in response to a significant reduction in fat mass. However, the weight restrictions appear to be limiting an increase in FFM which could be beneficial to rowing performance.
Resumo:
Much work has been done on obtaining empirical stress-velocity relations and evaluating the temperature dependence and activation energy of plastic deformation /1, 2/. Another prevalent concept is that of the drag coefficient and its variation with degree of crystal imperfection /3/. Significant differences and discrepancies exist in the reported values /2, 4/. Although it is recognised that the yield point is caused by point interstitials and aggregates, little has been done on the evaluation of specific crystal-solute combinations and interaction parameters. Some of the first efforts, in this direction were performed by Wain and Cottrell /5/.
Resumo:
An integrated approach to energy planning, when applied to large hydroelectric projects, requires that the energy-opportunity cost of the land submerged under the reservoir be incorporated into the planning methodology. Biomass energy lost from the submerged land has to be compared to the electrical energy generated, for which we develop four alternative formulations of the net-energy function. The design problem is posed as an LP problem and is solved for two sites in India. Our results show that the proposed designs may not be viable in net-energy terms, whereas a marginal reduction in the generation capacity could lead to an optimal design that gives substantial savings in the submerged area. Allowing seasonal variations in the hydroelectric generation capacity also reduces the reservoir size. A mixed hydro-wood generation system is then examined and is found to be viable.
Resumo:
Aims We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark-energy equation-of-state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. Methods We implemented an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-redshift galaxies. Results Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae alone; the parameter uncertainties are underestimated by 10%. The weak-lensing field-to-field variance between 1 deg2-MegaCam pointings is 5-15% higher than predicted from N-body simulations. We find no bias in the lensing signal at high redshift, within the framework of a simple model, and marginalising over cosmological parameters. Assuming a systematic underestimation of the lensing signal, the normalisation increases by up to 8%. Combining all three probes we obtain -0.10 < 1 + w < 0.06 at 68% confidence ( -0.18 < 1 + w < 0.12 at 95%), including systematic errors. Our results are therefore consistent with the cosmological constant . Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15.
Resumo:
This article is concerned with a study on the energy absorption behavior of polyurethane (PU) foams such as flexible high resilience (HR), flexible viscoelastic (VE) and semi-rigid (SR) foams as a function of the overall foam density. Foam samples were prepared in the form of cubes by mixing appropriate polyol and isocyanate compounds produced by Huntsman International India Pvt. Ltd. in varying proportions leading to a range of densities for each type of foam. The cubical samples were tested under compressive load in a standard UTM. Based on the measured load-displacement behaviors, variations of peak load and energy-absorption attributes with respect to density are plotted for each type of foam and the possible existence of an optimum foam density is shown.
Resumo:
It is shown that a magnetic-pressure-dominated, supersonic jet which expands (or contracts) in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to take place, the effective reconnection time must be a fraction ɛ ⪉ 1 of the expansion time. The amount of energy dissipation is calculated, and it is concluded that magnetic energy dissipation could, in principle, power the observed synchrotron emission in extragalactic radio jets such as NGC 6251. However, this mechanism is only viable if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.
Resumo:
Polar Regions are an energy sink of the Earth system, as the Sun rays do not reach the Poles for half of the year, and hit them only at very low angles for the other half of the year. In summer, solar radiation is the dominant energy source for the Polar areas, therefore even small changes in the surface albedo strongly affect the surface energy balance and, thus, the speed and amount of snow and ice melting. In winter, the main heat sources for the atmosphere are the cyclones approaching from lower latitudes, and the atmosphere-surface heat transfer takes place through turbulent mixing and longwave radiation, the latter dominated by clouds. The aim of this thesis is to improve the knowledge about the surface and atmospheric processes that control the surface energy budget over snow and ice, with particular focus on albedo during the spring and summer seasons, on horizontal advection of heat, cloud longwave forcing, and turbulent mixing during the winter season. The critical importance of a correct albedo representation in models is illustrated through the analysis of the causes for the errors in the surface and near-surface air temperature produced in a short-range numerical weather forecast by the HIRLAM model. Then, the daily and seasonal variability of snow and ice albedo have been examined by analysing field measurements of albedo, carried out in different environments. On the basis of the data analysis, simple albedo parameterizations have been derived, which can be implemented into thermodynamic sea ice models, as well as numerical weather prediction and climate models. Field measurements of radiation and turbulent fluxes over the Bay of Bothnia (Baltic Sea) also allowed examining the impact of a large albedo change during the melting season on surface energy and ice mass budgets. When high contrasts in surface albedo are present, as in the case of snow covered areas next to open water, the effect of the surface albedo heterogeneity on the downwelling solar irradiance under overcast condition is very significant, although it is usually not accounted for in single column radiative transfer calculations. To account for this effect, an effective albedo parameterization based on three-dimensional Monte Carlo radiative transfer calculations has been developed. To test a potentially relevant application of the effective albedo parameterization, its performance in the ground-based retrieval of cloud optical depth was illustrated. Finally, the factors causing the large variations of the surface and near-surface temperatures over the Central Arctic during winter were examined. The relative importance of cloud radiative forcing, turbulent mixing, and lateral heat advection on the Arctic surface temperature were quantified through the analysis of direct observations from Russian drifting ice stations, with the lateral heat advection calculated from reanalysis products.
Resumo:
We comment on the paradox that seems to exist about a correlation between the size-dependent melting temperature and the forbidden energy gap of nanoparticles. By analyzing the reported expressions for the melting temperature and the band gap of nanoparticles, we conclude that there exists a relation between these two physical quantities. However, the variations of these two quantities with size for semiconductors are different from that of metals. (C) 2010 American Institute of Physics.[doi:10.1063/1.3466920].
Resumo:
Background: One of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function. Results: In this study, we have explored the ligand induced conformational changes in H. pylori LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione) for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on H. pylori LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn2+ ion in LuxS and its relation to the rigidity at the active sites. Conclusions: In this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in any protein of known structure.
Resumo:
India's rural energy challenges are formidable with the presence of majority energy poor. In 2005, out of a rural population of 809 million, 364 million lacked access to electricity and 726 million to modern cooking fuels. This indicates low effectiveness of government policies and programs of the past, and need for a more effective approach to bridge this gap. However, before the government can address this challenge, it is essential that it gain a deeper insight into prevailing status of energy access and reasons for such outcomes. Toward this, we perform a critical analysis of the dynamics of energy access status with respect to time, income and regions, and present the results as possible indicators of effectiveness of policies/programmes. Results indicate that energy deprivations are highest for poorest households with 93% depending on biomass for cooking and 62% lacking access to electricity. The annual growth rates in expansion in energy access are gradually declining from double digit growth rates experienced 10 years back to just around 4% in recent years. Regional variations indicate, on an average, cooking access levels were 5.3 times higher in top five states compared to bottom five states whereas this ratio was 3.4 for electricity access. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Miniaturization of devices and the ensuing decrease in the threshold voltage has led to a substantial increase in the leakage component of the total processor energy consumption. Relatively simpler issue logic and the presence of a large number of function units in the VLIW and the clustered VLIW architectures attribute a large fraction of this leakage energy consumption in the functional units. However, functional units are not fully utilized in the VLIW architectures because of the inherent variations in the ILP of the programs. This underutilization is even more pronounced in the context of clustered VLIW architectures because of the contentions for the limited number of slow intercluster communication channels which lead to many short idle cycles.In the past, some architectural schemes have been proposed to obtain leakage energy bene .ts by aggressively exploiting the idleness of functional units. However, presence of many short idle cycles cause frequent transitions from the active mode to the sleep mode and vice-versa and adversely a ffects the energy benefits of a purely hardware based scheme. In this paper, we propose and evaluate a compiler instruction scheduling algorithm that assist such a hardware based scheme in the context of VLIW and clustered VLIW architectures. The proposed scheme exploits the scheduling slacks of instructions to orchestrate the functional unit mapping with the objective of reducing the number of transitions in functional units thereby keeping them off for a longer duration. The proposed compiler-assisted scheme obtains a further 12% reduction of energy consumption of functional units with negligible performance degradation over a hardware-only scheme for a VLIW architecture. The benefits are 15% and 17% in the context of a 2-clustered and a 4-clustered VLIW architecture respectively. Our test bed uses the Trimaran compiler infrastructure.