994 resultados para Energy functioning
Resumo:
On 11 October, the top executives of ten European energy companies, which jointly own about half of the European Union’s electricity generating capacity, warned that “energy security is no longer guaranteed” and once again called for changes to EU energy policy. Due to persistent adverse conditions in the energy market (linked to, for example, the exceptionally low wholesale energy prices) more and more conventional power plants are being closed down. According to sector representatives, this could lead to energy shortages being seen as early as this winter. Meanwhile, in an interview with The Daily Telegraph published in September of this year, the European industry commissioner Antonio Tajani warned – in a rather alarmist tone – of the disastrous consequences the rising energy prices could have on European industry. Amongst the reasons for the high prices of energy, Tajani mentioned the overambitious pace and methods used to increase the share of renewables in the sector. In a similar vein, EU President Herman Van Rompuy has highlighted the need to reduce energy costs as a top priority for EU energy policy1. The price of energy has become one of the central issues in the current EU energy debate. The high consumer price of energy – which has been rising steadily over the past several years – poses a serious challenge to both household and industrial users. Meanwhile, the declining wholesale prices are affecting the cost-effectiveness of energy production and the profits of energy companies. The current difficulties, however, are first and foremost a symptom of much wider problems related to the functioning of both the EU energy market as well as to the EU’s climate and energy policies.
Resumo:
Initiated in May 2011, several months after the Fukushima nuclear disaster, Germany’s energy transformation (Energiewende) has been presented as an irrevocable plan, and – due to the speed of change required – it represents a new quality in Germany’s energy strategy. Its main objectives include: nuclear energy being phased out by 2022, the development of renewable energy sources (OZE), the expansion of transmission networks, the construction of new conventional power plants and an improvement in energy efficiency.The cornerstone of the strategy is the development of renewable energy. Under Germany's amended renewable energy law, the proportion of renewable energy in electricity generation is supposed to increase steadily from the current level of around 20% to approximately 38% in 2020. In 2030, renewable energy is expected to account for 50% of electricity generation. This is expected to increase to 65% in 2040 and to as much as 80% in 2050. The impact of the Energiewende is not limited to the sphere of energy supplies. In the medium and long term, it will change not only to the way the German economy operates, but also the functioning of German society and the state. Facing difficulties with the expansion of transmission networks, the excessive cost of building wind farms, and problems with the stability of electricity supplies, especially during particularly cold winters, the federal government has so far tended to centralise power and limit the independence of the German federal states with regard to their respective energy policies, justifying this with the need for greater co-ordination. The Energiewende may also become the beginning of a "third industrial revolution", i.e. a transition to a green economy and a society based on sustainable development. This will require a new "social contract" that will redefine the relations between the state, society and the economy. Negotiating such a contract will be one of the greatest challenges for German policy in the coming years.
Resumo:
Sufficient cross‐border electricity transmission infrastructure is a pre‐requisite for a functioning European internal market for electricity. Also, the achievement of the EU’s energy policy objectives – sustainability, competitiveness and security of supply – critically depends on adequate investment in physical interconnections between the member states. Mainly focusing on the “regulatory path”, this paper assesses different ways to achieve a sufficient level of interconnector investment. In a first step, economic analysis identifies numerous impediments to interconnector investment adding up to an “interconnector investment failure”. Reflecting on the proper regulatory design of an EU framework able to overcome the interconnector investment failure, a number of recommendations are put forward: All congestion rents should be channeled into interconnector building. Unused rents should be transferred to a European interconnector fund supervised by an EU agency. Even though inherently sub‐optimal, merchant transmission investment can be used as a means to put pressure on regulated transmission system operators (TSO) that do not deliver. An EU agency should have exclusive competence on merchant interconnector exemptions. A European TSO organization should be entrusted with supra‐national network planning, supervised by an EU agency. The agency should decide on investment cost reallocation for interconnector projects that yield strong externalities. Payments could be settled via a European interconnector fund. In case of non‐compliance with the supra‐national network plan, the EU agency should have the right to organize a tender – financed by the European interconnector fund – in order to get the “missing link” built. Assessing the existing EU regulatory framework, the efforts of the 2009 “third energy package” to fill the “regulatory gap” with new EU bodies – ACER and ENTSO‐E – are acknowledged. However, striking holes in regulatory framework are spotted, notably with regard to the use of congestion rents, interconnector cost allocation, and the distribution of decision making powers on new infrastructure exemptions A discussion of the TEN‐E interconnector funding scheme shows that massive funding can be an interim solution to the problem of insufficient interconnection capacities while overcoming the political deadlock on sensible regulatory topics such as interconnector cost allocation. The paper ends with policy recommendations.
Resumo:
European Union energy policy calls for nothing less than a profound transformation of the EU's energy system: by 2050 decarbonised electricity generation with 80-95% fewer greenhouse gas emissions, increased use of renewables, more energy efficiency, a functioning energy market and increased security of supply are to be achieved. Different EU policies (e.g., EU climate and energy package for 2020) are intended to create the political and regulatory framework for this transformation. The sectorial dynamics resulting from these EU policies already affect the systems of electricity generation, transportation and storage in Europe, and the more effective the implementation of new measures the more the structure of Europe's power system will change in the years to come. Recent initiatives such as the 2030 climate/energy package and the Energy Union are supposed to keep this dynamic up. Setting new EU targets, however, is not necessarily the same as meeting them. The impact of EU energy policy is likely to have considerable geo-economic implications for individual member states: with increasing market integration come new competitors; coal and gas power plants face new renewable challengers domestically and abroad; and diversification towards new suppliers will result in new trade routes, entry points and infrastructure. Where these implications are at odds with powerful national interests, any member state may point to Article 194, 2 of the Lisbon Treaty and argue that the EU's energy policy agenda interferes with its given right to determine the conditions for exploiting its energy resources, the choice between different energy sources and the general structure of its energy supply. The implementation of new policy initiatives therefore involves intense negotiations to conciliate contradicting interests, something that traditionally has been far from easy to achieve. In areas where this process runs into difficulties, the transfer of sovereignty to the European level is usually to be found amongst the suggested solutions. Pooling sovereignty on a new level, however, does not automatically result in a consensus, i.e., conciliate contradicting interests. Rather than focussing on the right level of decision making, European policy makers need to face the (inconvenient truth of) geo-economical frictions within the Union that make it difficult to come to an arrangement. The reminder of this text explains these latter, more structural and sector-related challenges for European energy policy in more detail, and develops some concrete steps towards a political and regulatory framework necessary to overcome them.
Resumo:
This paper examines the functioning of energy efficiency standards and labeling policies for air conditioners in Japan. The results of our empirical analysis suggest that consumers respond more to label information, which benchmarks the energy efficiency performance of each product to a pre-specified target, than to direct performance measures. This finding provides justification for the setting, and regular updating, of target standards as well as their use in calculating relative performance measures. We also find, through graphical analysis, that air conditioner manufacturers face a tradeoff between energy efficiency and product compactness when they develop their products. This tradeoff, combined with the semi-regular upward revision of minimum energy efficiency standards, has led to the growth in indoor unit size of air conditioners in recent years. In the face of this phenomenon, regulatory rules were revised so that manufacturers could adhere to less stringent standards if the indoor unit size of their product remains below a certain size. Our demand estimates provide no evidence that larger indoor unit size causes disutility to consumers. It is therefore possible that the regulatory change was not warranted from a consumer welfare point of view.
Resumo:
A ray tracing model has been developed to investigate the possible focusing effects of the convexly curved epidermal cell walls which characterize a number of shade-adapted plants. The model indicates that such focusing occurs, resulting in higher photosynthetic photon flux densities at certain locations within the leaf. It is postulated that there will be a corresponding increase in the rate of photosynthesis. In addition, leaf reflectance measurements indicate that this is generally less for the shade plants compared with sun species and would be advantageous in increasing the efficiency of energy capture. Either effect is important for plants which must survive at extremely low light levels.
Resumo:
The Inupiaq Tribe resides north of the Arctic Circle in northwestern Alaska. The people are characterized by their continued dependence on harvested fish, game and plants, known as a subsistence lifestyle (Lee 2000:35-45). Many are suggesting that they leave their historical home and move to urban communities, places believed to be more comfortable as they age. Tribal Elders disagree and have stated, "Elders need to be near the river where they were raised" (Branch 2005:1). The research questions focused on differences that location had on four groups of variables: nutrition parameters, community support, physical functioning and health. A total of 101 Inupiaq Elders ≥ 50 years were surveyed: 52 from two rural villages, and 49 in Anchorage. Location did not influence energy intake or intake of protein; levels of nutrition risk and food insecurity; all had similar rates between the two groups. Both rural and urban Elders reported few limitations of ADLs and IADLs. Self-reported general health scores (SF-12.v2 GH) were also similar by location. Differences were found with rural Elders reporting higher physical functioning summary scores (SF-12.v2 PCS), higher mental health scores (SF-12.v2 MH), higher vitality and less pain even though the rural mean ages were five years older than the urban Elders. Traditional food customs appear to support the overall health and well being of the rural Inupiaq Elders as demonstrated by higher intakes of Native foods, stronger food sharing networks and higher family activity scores than did urban Elders. The rural community appeared to foster continued physical activity. It has been said that when Elders are in the rural setting they are near "people they know" and it is a place "where they can get their Native food" (NRC 2005). These factors appear to be important as Inupiaq Elders age, as rural Inupiaq Elders fared as well or better than Inupiaq Elders in terms of diet, mental and physical health.
Resumo:
E=MC³ Energy Equals Management's Continued Cost Concern, is an essay written by Fritz G. Hagenmeyer, Associate Professor, School of Hospitality Management at Florida International University. In the writing, Hagenmeyer initially tenders: “Energy problems in the hospitality industry can be contained or reduced, yielding elevated profits as a result of applied, quality management principles. The concepts, processes and procedures presented in this article are intended to aid present and future managers to become more effective with a sharpened focus on profitability.” This article is an overview of energy efficiency and the management of such. In an expanding energy consumption market with its escalating costs, energy management has become an ever increasing concern and component of responsible hospitality management, Hagenmeyer will have you know. “In endeavoring to "manage" on a day-to-day basis a functioning hospitality building's energy system, the person in charge must take on the role of Justice with her scales, attempting to balance the often varying comfort needs of guests and occupants with the invariable rising costs of energy utilized to generate and maintain such comfort conditions, since comfort is seen as an integral part of the "service," "product," or "price/value” perception of patrons,” says Hagenmeyer. In contrast to what was thought in the mid point of this century - that energy would be abundant and cheap - the reality has set-in that this is not the case; not by a long shot. The author wants you to be aware that energy costs in buildings are a force to be reckoned with; a major expense to be sure. “Since 1973, "energy-conscious design" has begun to become part of the repertoire of architects, design engineers, and construction companies,” Hagenmeyer states. “For instance, whereas office buildings of the early 1970s might have used 400,000 British Thermal Units (BTUs) per square foot year, new buildings are going up that use 55,000 to 65,000 BTUs per square foot year,” Hagenmeyer, like an incandescent bulb, illuminates you. Hagenmeyer references Robert E. Aulbach’s article - Energy Management – when informing you that the hospitality manager should not become complacent in addressing the energy cost issue, but should and must maintain a diligent focus on the problem. Hagenmeyer also makes reference to the Middle East War and to OPEC, and their influence on energy prices. In closing, Hagenmeyer suggests an - Energy Management Action Plan – which he outlines for you.
Resumo:
The aim of this study is to clarify the role of the Southern Ocean storms on interior mixing and meridional overturning circulation. A periodic and idealized numerical model has been designed to represent the key physical processes of a zonal portion of the Southern Ocean located between 70 and 40° S. It incorporates physical ingredients deemed essential for Southern Ocean functioning: rough topography, seasonally varying air–sea fluxes, and high-latitude storms with analytical form. The forcing strategy ensures that the time mean wind stress is the same between the different simulations, so the effect of the storms on the mean wind stress and resulting impacts on the Southern Ocean dynamics are not considered in this study. Level and distribution of mixing attributable to high-frequency winds are quantified and compared to those generated by eddy–topography interactions and dissipation of the balanced flow. Results suggest that (1) the synoptic atmospheric variability alone can generate the levels of mid-depth dissipation frequently observed in the Southern Ocean (10−10–10−9 W kg−1) and (2) the storms strengthen the overturning, primarily through enhanced mixing in the upper 300 m, whereas deeper mixing has a minor effect. The sensitivity of the results to horizontal resolution (20, 5, 2 and 1 km), vertical resolution and numerical choices is evaluated. Challenging issues concerning how numerical models are able to represent interior mixing forced by high-frequency winds are exposed and discussed, particularly in the context of the overturning circulation. Overall, submesoscale-permitting ocean modeling exhibits important delicacies owing to a lack of convergence of key components of its energetics even when reaching Δx = 1 km.
Resumo:
OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.
Clustering of Protein Structures Using Hydrophobic Free Energy And Solvent Accessibility of Proteins