931 resultados para Encoding (symbols)
Resumo:
This project was a step forward in developing and evaluating a novel, mathematical model that can deduce the meaning of words based on their use in language. This model can be applied to a wide range of natural language applications, including the information seeking process most of us undertake on a daily basis.
Resumo:
This thesis makes several contributions towards improved methods for encoding structure in computational models of word meaning. New methods are proposed and evaluated which address the requirement of being able to easily encode linguistic structural features within a computational representation while retaining the ability to scale to large volumes of textual data. Various methods are implemented and evaluated on a range of evaluation tasks to demonstrate the effectiveness of the proposed methods.
Resumo:
Reports of children and teachers taking transformative social action in schools are becoming rare. This session illustrates how teachers, while feeling the weight of accountability testing in schools, are active agents who can re-imagine literacy pedagogy to change elements of their community. It reports the critical dimensions of a movie-making unit with Year 5 students within a school reform project. The students filmed interviews with people in the local shops to gather lay-knowledge and experiences of the community. The short documentaries challenged stereotypes about what it is like to live in Logan, and critically identified potential improvements to public spaces in the local community. A student panel presented these multimodal texts at a national conference of social activists and community leaders. The report does not valorize or privilege local or lay knowledge over dominant knowledge, but argues that prescribed curriculum should not hinder the capacity for critical consciousness.
Resumo:
Potato leafroll virus (PLRV) is a positive-strand RNA virus that generates subgenomic RNAs (sgRNA) for expression of 3' proximal genes. Small RNA (sRNA) sequencing and mapping of the PLRV-derived sRNAs revealed coverage of the entire viral genome with the exception of four distinctive gaps. Remarkably, these gaps mapped to areas of PLRV genome with extensive secondary structures, such as the internal ribosome entry site and 5' transcriptional start site of sgRNA1 and sgRNA2. The last gap mapped to ~500. nt from the 3' terminus of PLRV genome and suggested the possible presence of an additional sgRNA for PLRV. Quantitative real-time PCR and northern blot analysis confirmed the expression of sgRNA3 and subsequent analyses placed its 5' transcriptional start site at position 5347 of PLRV genome. A regulatory role is proposed for the PLRV sgRNA3 as it encodes for an RNA-binding protein with specificity to the 5' of PLRV genomic RNA. © 2013.
Resumo:
Barley yellow dwarf virus-PAV (BYDV-PAV) is the most serious and widespread virus of cereals worldwide. Natural resistance genes against this luteovirus give inadequate control, and previous attempts to introduce synthetic resistance into cereals have produced variable results. In an attempt to generate barley with protection against BYDV-PAV, plants were transformed with a transgene designed to produce hairpin (hp)RNA containing BYDV-PAV sequences. From 25 independent barley lines transformed with the BYDV-PAV hpRNA construct, nine lines showed extreme resistance to the virus and the majority of these contained a single transgene. In the progeny of two independent transgenic lines, inheritance of a single transgene consistently correlated with protection against BYDV-PAV. This protection was rated as immunity because the virus could not be detected in the challenged plants by ELISA nor recovered by aphid feeding experiments. In the field, BYDV-PAV is sometimes associated with the related luteovirus Cereal yellow dwarf virus-RPV (CYDV-RPV). When the transgenic plants were challenged with BYDV-PAV and CYDV-RPV together, the plants were susceptible to CYDV-RPV but immune to BYDV-PAV. This shows that the immunity is virus-specific and not broken down by the presence of CYDV. It suggests that CYDV-RPV does not encode a silencing-suppressor gene or that its product does not protect BYDV-PAV against the plant's RNAi-like defence mechanism. Either way, our results indicate that the BYDV-PAV immunity will be robust in the field and is potentially useful in minimizing losses in cereal production worldwide.
Resumo:
Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12–C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5′- and 3′-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.
Resumo:
Restriction fragment length polymorphisms have been used to determine the chromosomal location of the genes encoding the glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) of pea leaf mitochondria. The genes encoding the H subunit of GDC and the genes encoding SHMT both show linkage to the classical group I marker i. In addition, the genes for the P protein of GDC show linkage to the classic group I marker a. The genes for the L and T proteins of GDC are linked to one another and are probably situated on the satellite of chromosome 7. The mRNAs encoding the five polypeptides that make up GDC and SHMT are strongly induced when dark-grown etiolated pea seedlings are placed in the light. Similarly, when mature plants are placed in the dark for 48 h, the levels of both GDC protein and SHMT mRNAs decline dramatically and then are induced strongly when these plants are returned to the light. During both treatments a similar pattern of mRNA induction is observed, with the mRNA encoding the P protein of GDC being the most rapidly induced and the mRNA for the H protein the slowest. Whereas during the greening of etiolated seedlings the polypeptides of GDC and SHMT show patterns of accumulation similar to those of the corresponding mRNAs, very little change in the level of the polypeptides is seen when mature plants are placed in the dark and then re-exposed to the light.
Resumo:
Schistosomes express a family of integral membrane proteins, called tetraspanins (TSPs), in the outer surface membranes of the tegument. Two of these tetraspanins, Sm-TSP-1 and Sm-TSP-2, confer protection as vaccines in mice, and individuals who are naturally resistant to S. mansoni infection mount a strong IgG response to Sm-TSP-2. To determine their functions in the tegument of S. mansoni we used RNA interference to silence expression of Sm-tsp-1 and Sm-tsp-2 mRNAs. Soaking of parasites in Sm-tsp dsRNAs resulted in 61% (p = 0.009) and 74% (p = 0.009) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in adult worms, and 67%–75% (p = 0.011) and 69%–89% (p = 0.004) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in schistosomula compared to worms treated with irrelevant control (luciferase) dsRNA. Ultrastructural morphology of adult worms treated in vitro with Sm-tsp-2 dsRNA displayed a distinctly vacuolated and thinner tegument compared with controls. Schistosomula exposed in vitro to Sm-tsp-2 dsRNA had a significantly thinner and more vacuolated tegument, and morphology consistent with a failure of tegumentary invaginations to close. Injection of mice with schistosomula that had been electroporated with Sm-tsp-1 and Sm-tsp-2 dsRNAs resulted in 61% (p = 0.005) and 83% (p = 0.002) reductions in the numbers of parasites recovered from the mesenteries four weeks later when compared to dsRNA-treated controls. These results imply that tetraspanins play important structural roles impacting tegument development, maturation or stability.
Resumo:
In this paper conditional hidden Markov model (HMM) filters and conditional Kalman filters (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the optimal HMM filter for demodulation. The filter requires O(N3) calculations per time iteration, where N is the number of message symbols. Decision feedback equalisation is investigated via coupling the optimal HMM filter for estimating the message, conditioned on estimates of the channel parameters, and a KF for estimating the channel states, conditioned on soft information message estimates. The particular differential encoding scheme examined in this paper is differential phase shift keying. However, the techniques developed can be extended to other forms of differential modulation. The channel model we use allows for multiplicative channel distortions and additive white Gaussian noise. Simulation studies are also presented.
Resumo:
Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.
Resumo:
Emotionally significant memories, especially those induced in conjunction with physical and mental trauma, are frequently retained for an individual’s lifetime. How these memories are organized and encoded within neural networks is a fundamental question. The lateral amygdala (LA) is a key nucleus for acquisition and maintenance of associative emotional memories. We used Pavlovian fear conditioning to study how ‘weaker’ and ‘stronger’ memories are encoded in neural networks of the LA. In Pavlovian fear conditioning a neutral stimulus, in this case a tone, is temporally paired with an aversive unconditioned stimulus (US), such as a foot shock. The previously neutral stimulus becomes a conditioned stimulus (CS) capable of eliciting defensive responses. We used time spent freezing when the CS is presented in a neutral context as a dependent variable measure of memory ‘strength’.
Resumo:
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory.
Resumo:
Word frequency (WF) and strength effects are two important phenomena associated with episodic memory. The former refers to the superior hit-rate (HR) for low (LF) compared to high frequency (HF) words in recognition memory, while the latter describes the incremental effect(s) upon HRs associated with repeating an item at study. Using the "subsequent memory" method with event-related fMRI, we tested the attention-at-encoding (AE) [M. Glanzer, J.K. Adams, The mirror effect in recognition memory: data and theory, J. Exp. Psychol.: Learn Mem. Cogn. 16 (1990) 5-16] explanation of the WF effect. In addition to investigating encoding strength, we addressed if study involves accessing prior representations of repeated items via the same mechanism as that at test [J.L. McClelland, M. Chappell, Familiarity breeds differentiation: a subjective-likelihood approach to the effects of experience in recognition memory, Psychol. Rev. 105 (1998) 724-760], entailing recollection [K.J. Malmberg, J.E. Holden, R.M. Shiffrin, Modeling the effects of repetitions, similarity, and normative word frequency on judgments of frequency and recognition memory, J. Exp. Psychol.: Learn Mem. Cogn. 30 (2004) 319-331] and whether less processing effort is entailed for encoding each repetition [M. Cary, L.M. Reder, A dual-process account of the list-length and strength-based mirror effects in recognition, J. Mem. Lang. 49 (2003) 231-248]. The increased BOLD responses observed in the left inferior prefrontal cortex (LIPC) for the WF effect provide support for an AE account. Less effort does appear to be required for encoding each repetition of an item, as reduced BOLD responses were observed in the LIPC and left lateral temporal cortex; both regions demonstrated increased responses in the conventional subsequent memory analysis. At test, a left lateral parietal BOLD response was observed for studied versus unstudied items, while only medial parietal activity was observed for repeated items at study, indicating that accessing prior representations at encoding does not necessarily occur via the same mechanism as that at test, and is unlikely to involve a conscious recall-like process such as recollection. This information may prove useful for constraining cognitive theories of episodic memory.
Resumo:
Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.
Resumo:
Objectives: To replicate the possible genetic association between ankylosing spondylitis (AS) and TNFRSF1A. Methods: TNFRSF1A was re-sequenced in 48 individuals with AS to identify novel polymorphisms. Nine single nucleotide polymorphisms (SNPs) in TNFRSF1A and 5 SNPs in the neighbouring gene SCNN1A were genotyped in 1604 UK Caucasian individuals with AS and 1019 matched controls. An extended study was implemented using additional genotype data on 8 of these SNPs from 1400 historical controls from the 1958 British Birth Cohort. A meta-analysis of previously published results was also undertaken. Results: One novel variant in intron 6 was identified but no new coding variants. No definite associations were seen in the initial study but in the extended study there were weak associations with rs4149576 (p=0.04) and rs4149577 (p=0.007). In the metaanalysis consistent, somewhat stronger associations were seen with rs4149577 (p=0.002) and rs4149578 (p=0.006). Conclusions: These studies confirm the weak genetic associations between AS and TNFRSF1A. In view of the previously reported associations of TNFRSF1A with AS, in Caucasians and Chinese, and the biological plausibility of this candidate gene, replication of this finding in well powered studies is clearly indicated.