23 resultados para Emmetropia
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: To assess visual outcomes and patient satisfaction following implantation of the Sulcoflex® multifocal intraocular lens (IOL; Rayner Intraocular Lenses Ltd., Hove, UK) in a procedure combining capsular bag lens implantation with sulcus placement of the Sulcoflex® IOL. Setting: Instituto de Oftalmologia de Assis, Assis, SP, Brazil. Methods: Cataract patients > 45 years, with hyperopia ≥ 1.50 D and potential acuity measurement ≥ 20/30 undergoing Sulcoflex® multifocal IOL implantation were included. Monocular and binocular uncorrected near and distance visual acuity (VA) were evaluated at five days, one month, and three months postoperatively. Contrast sensitivity and refraction were measured in a subset of patients three months postoperatively. Patient satisfaction was assessed one month postoperative. Results: This non-consecutive case series comprised 25 eyes of 13 patients. Eleven eyes (52%) had pre-existing retinal pathologies. Monocular distance VA improved significantly at all follow-up visits. At final follow-up, 88% of eyes had monocular uncorrected distance VA (UDVA) of at least 20/25 and 24% had monocular UDVA of 20/20. All eyes had binocular UDVA of at least 20/25, and 58% had binocular UDVA of 20/20. Monocular uncorrected near vision (UNVA) was J1 in 68% of eyes and all patients had binocular UNVA of J1. Of all eyes studied, 92% and 58% achieved a spherical equivalent within 1 D and −0.5 D, respectively. The majority of patients reported satisfaction with visual outcomes. Complications included a postoperative intraocular pressure spike in four eyes. Conclusion: The Sulcoflex® multifocal IOL improves near and distance VA in cataract patients with retinal abnormalities and good VA potential.
Resumo:
Background To evaluate the 3-year clinical outcomes after toric implantable collamer lens (ICL) implantation for the management of moderate to high myopic astigmatism. Methods Thirty-four eyes of 20 patients who underwent toric ICL implantation were reviewed. All eyes completed 3-year follow-up. Uncorrected (UDVA) and corrected (CDVA) distance LogMAR visual acuities, refraction, endothelial cell density (ECD), and surgical complications were evaluated. Vectorial analysis of astigmatic correction was also done. Results A significant improvement in UDVA, CDVA, manifest spherical and cylindrical refraction was observed at 1 week and remained stable after 3 years. Twenty-six eyes (76.5 %) gained lines of CDVA, and two eyes (5.9 %) showed a loss of 1 line of CDVA. The spherical equivalent (SE) was within ±0.50 D of emmetropia in 18 eyes (52.9 %) and within ±1.00 D in 28 eyes (82.4 %). Differences between target-induced astigmatism (TIA) and surgically-induced astigmatism (SIA) were statistically significant (p < 0.01), and a trend to undercorrection of the refractive astigmatism was present after 3 years. The magnitude of flattening effect (FE) was found to be significantly lower than the magnitude of TIA (p < 0.01). The magnitude of the torque vector was always positive, with a value below 0.50 D in all cases. No vision-threatening complications were observed during the follow-up. Conclusion Toric ICL implantation is an effective and safe surgical option that provides a relatively predictable and stable refractive correction of myopic astigmatism. Further improvements are needed to minimize the degree of undercorrection.
Resumo:
Purpose: To evaluate the relationship between different ocular and corneal biomechanical parameters in emmetropic and ametropic healthy white children. Methods: This study included 293 eyes of 293 healthy Spanish children (135 boys and 158 girls), ranging in age from 6 to 17 years. Subjects were divided according to the refractive error: control (emmetropia, 99 children), myopia (100 children), and hyperopia (94 children) groups. In all cases, corneal hysteresis (CH) and corneal resistance factor (CRF) were evaluated with the Ocular Response Analyzer system. Axial length (AL) and mean corneal power were also measured by partial coherence interferometry (IOLMaster), and central corneal thickness (CCT) and anterior chamber depth were measured by anterior segment optical coherence tomography (Visante). Results: Mean (±SD) CH and CRF were 12.12 (±1.71) and 12.30 (±1.89) mm Hg, respectively. Mean (±SD) CCT was 542.68 (±37.20) μm and mean (±SD) spherical equivalent was +0.14 (±3.41) diopters. A positive correlation was found between CH and CRF (p < 0.001), and both correlated as well with CCT (p < 0.0001). Corneal resistance factor was found to decrease with increasing age (p = 0.01). Lower levels of CH were associated with longer AL and more myopia (p < 0.001 and p = 0.001, respectively). Higher values of CH were associated with increasing hyperopia. Significant differences in CH were found between emmetropic and myopic groups (p < 0.001) and between myopic and hyperopic groups (p = 0.011). There were also significant differences in CRF between emmetropic and myopic groups (p = 0.02). Multiple linear regression analysis showed that lower CH and CRF significantly associated with thinner CCT, longer AL, and flatter corneal curvature. Conclusions: The Ocular Response Analyzer corneal biomechanical properties seem to be compromised in myopia from an early age, especially in high myopia.
Resumo:
PURPOSE: To evaluate theoretically three previously published formulae that use intra-operative aphakic refractive error to calculate intraocular lens (IOL) power, not necessitating pre-operative biometry. The formulae are as follows: IOL power (D) = Aphakic refraction x 2.01 [Ianchulev et al., J. Cataract Refract. Surg.31 (2005) 1530]; IOL power (D) = Aphakic refraction x 1.75 [Mackool et al., J. Cataract Refract. Surg.32 (2006) 435]; IOL power (D) = 0.07x(2) + 1.27x + 1.22, where x = aphakic refraction [Leccisotti, Graefes Arch. Clin. Exp. Ophthalmol.246 (2008) 729]. METHODS: Gaussian first order calculations were used to determine the relationship between intra-operative aphakic refractive error and the IOL power required for emmetropia in a series of schematic eyes incorporating varying corneal powers, pre-operative crystalline lens powers, axial lengths and post-operative IOL positions. The three previously published formulae, based on empirical data, were then compared in terms of IOL power errors that arose in the same schematic eye variants. RESULTS: An inverse relationship exists between theoretical ratio and axial length. Corneal power and initial lens power have little effect on calculated ratios, whilst final IOL position has a significant impact. None of the three empirically derived formulae are universally accurate but each is able to predict IOL power precisely in certain theoretical scenarios. The formulae derived by Ianchulev et al. and Leccisotti are most accurate for posterior IOL positions, whereas the Mackool et al. formula is most reliable when the IOL is located more anteriorly. CONCLUSION: Final IOL position was found to be the chief determinant of IOL power errors. Although the A-constants of IOLs are known and may be accurate, a variety of factors can still influence the final IOL position and lead to undesirable refractive errors. Optimum results using these novel formulae would be achieved in myopic eyes.
Resumo:
Purpose. The prevalence of myopia is known to vary with age, ethnicity, level of education, and socioeconomic status, with a high prevalence reported in university students and in people from East Asian countries. This study determines the prevalence of ametropia in a mixed ethnicity U.K. university student population and compares associated ocular biometric measures. Methods. Refractive error and related ocular component data were collected on 373 first-year U.K. undergraduate students (mean age = 19.55 years ± 2.99, range = 17-30 years) at the start of the academic year at Aston University, Birmingham, and the University of Bradford, West Yorkshire. The ethnic variation of the students was as follows: white 38.9%, British Asian 58.2%, Chinese 2.1%, and black 0.8%. Noncycloplegic refractive error was measured with an infrared open-field autorefractor, the Shin-Nippon NVision-K 5001 (Shin Nippon, Ryusyo Industrial Co. Ltd, Osaka, Japan). Myopia was defined as a mean spherical equivalent (MSE) less than or equal to -0.50 D. Hyperopia was defined as an MSE greater than or equal to +0.50 D. Axial length, corneal curvature, and anterior chamber depth were measured using the Zeiss IOLMaster (Carl Zeiss, Jena, GmBH). Results. The analysis was carried out only for white and British Asian groups. The overall distribution of refractive error exhibited leptokurtosis, and prevalence levels were similar for white and British Asian (the predominant ethnic group) students across each ametropic group: myopia (50% vs. 53.4%), hyperopia (18.8% vs. 17.3%), and emmetropia (31.2% vs. 29.3%). There were no significant differences in the distribution of ametropia and biometric components between white and British Asian samples. Conclusion. The absence of a significant difference in refractive error and ocular components between white and British Asian students exposed to the same educational system is of interest. However, it is clear that a further study incorporating formal epidemiologic methods of analysis is required to address adequately the recent proposal that juvenile myopia develops principally from myopiagenic environments and is relatively independent of ethnicity.
Resumo:
The ocular problems associated with premature birth have been with us ever since it was discovered that the application of high levels of inspired oxygen provided a reduction in mortality. The consequence of this reduction in mortality has been a rise in morbidity; these mortality and morbidity rates have oscillated during the attempt to find a reasonable balance. The use of contemporary technology during the attempt both to understand the premature baby's delicate physiology and to maintain life to younger and lighter babies has not yet produced stability. The incidence of typical retinal maldevelopment, retinopathy of prematurity (RCP), was analysed by serial weekly ophthalmoscopy examinations in a regional special care baby unit, 579 examinations being made on 138 babies. The best instrument for this examination was found to be a compact indirect ophthalmoscope incorporating an inverting eyepiece - the Reichert Jung monocular indirect ophthalmoscope. The optimum time for ocular examination to discover potential ocular morbidity was at 33 weeks post-conceptual age (PCA) with continued examinations to the age of 37 weeks PCA. The babies that were found to be at risk of a significant grade of RCP were found to be of a birth weight of less than 1251 grams or had an estimated gestational age at birth of 30 weeks or less. A refractive state of myopia was found to be the norm. The myopia reduced as life progressed to attain emmetropia around the age of 50 weeks PCA or 22 weeks survival. The reduction of the myopic state was found to be dependent on birth weight and gestational age at birth, the youngest and therefore the lightest being more predictable in attaining emmetropia. Refractive variations were found to be coincident with the timings of certain medical treatment regimes and a hypothesis is postulated as to the mechanism of this association.
Resumo:
Purpose. We describe the profile and associations of anisometropia and aniso-astigmatism in a population-based sample of children. Methods. The Northern Ireland Childhood Errors of Refraction (NICER) study used a stratified random cluster design to recruit a representative sample of children from schools in Northern Ireland. Examinations included cycloplegic (1% cyclopentolate) autorefraction, and measures of axial length, anterior chamber depth, and corneal curvature. ?2 tests were used to assess variations in the prevalence of anisometropia and aniso-astigmatism by age group, with logistic regression used to compare odds of anisometropia and aniso-astigmatism with refractive status (myopia, emmetropia, hyperopia). The Mann-Whitney U test was used to examine interocular differences in ocular biometry. Results. Data from 661 white children aged 12 to 13 years (50.5% male) and 389 white children aged 6 to 7 years (49.6% male) are presented. The prevalence of anisometropia =1 diopters sphere (DS) did not differ statistically significantly between 6- to 7-year-old (8.5%; 95% confidence interval [CI], 3.9–13.1) and 12- to 13-year-old (9.4%; 95% CI, 5.9–12.9) children. The prevalence of aniso-astigmatism =1 diopters cylinder (DC) did not vary statistically significantly between 6- to 7-year-old (7.7%; 95% CI, 4.3–11.2) and 12- to 13-year-old (5.6%; 95% CI, 0.5–8.1) children. Anisometropia and aniso-astigmatism were more common in 12- to 13-year-old children with hyperopia =+2 DS. Anisometropic eyes had greater axial length asymmetry than nonanisometropic eyes. Aniso-astigmatic eyes were more asymmetric in axial length and corneal astigmatism than eyes without aniso-astigmatism. Conclusions. In this population, there is a high prevalence of axial anisometropia and corneal/axial aniso-astigmatism, associated with hyperopia, but whether these relations are causal is unclear. Further work is required to clarify the developmental mechanism behind these associations.