984 resultados para Embryonic Motoneurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed cDNA microarray analyses to identify gene expression differences between highly invasive glioblastoma multiforme (GBM) and typically benign pilocytic astrocytomas (PA). Despite the significant clinical and pathological differences between the 2 tumor types, only 63 genes were found to exhibit 2-fold or greater overexpression in GBM as compared to PA. Forty percent of these genes are related to the regulation of the cell cycle and mitosis. QT-PCR validation of 6 overexpressed genes: MELK, AUKB, ASPM, PRC1, IL13RA2 and KIAA0101 confirmed at least a 5-fold increase in the average expression levels in GBM. Maternal embryonic leucine zipper kinase (MELK) exhibited the most statistically significant difference. A more detailed investigation of MELK expression was undertaken to study its oncogenic relevance. In the examination of more than 100 tumors of the central nervous system, we found progressively higher expression of MELK with astrocytoma grade and a noteworthy uniformity of high level expression in GBM. Similar level of overexpression was also observed in medulloblastoma. We found neither gene promoter hypomethylation nor amplification to be a factor in MELK expression, but were able to demonstrate that MELK knockdown in malignant astrocytoma cell lines caused a reduction in proliferation and anchorage-independent growth in in vitro assays. Our results indicate that GBM and PA differ by the expression of surprisingly few genes. Among them, MELK correlated with malignancy grade in astrocytomas and represents a therapeutic target for the management of the most frequent brain tumors in adult and children. (C) 2007 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9-11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8-10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nervous system of temnocephalid flatworms consists of the brain and three pairs of longitudinal connectives extending into the trunk and tail. The connectives are crosslinked by an invariant number of regularly spaced commissures. Branches of the connectives innervate the tentacles of the head and the sucker organ in the tail. A set of nerve rings encircling the pharynx and connected to the brain and connectives constitute the pharyngeal nervous system. The nervous system is formed during early embryogenesis when the embryo represents a multilayered mesenchymal mass of cells. Gastrulation and the formation of separate epithelial germ layers that characterize most other animal groups are absent. The brain arises as a bilaterally symmetric condensation of postmitotic cells in the deep layers of the anterior region of the embryonic mesenchyme. The pattern of axon outgrowth, visualized by labeling with anti-acetylated tubulin (acTub) antibody, shows marked differences from the pattern observed in other flatworm taxa. in regard to the number of neurons that express the acTub epitope. Acetylated tubulin is only expressed in neurons that form long axon tracts. In other flatworm species, such as the typhloplanoid Mesostoma and the polyclad Imogine, which were investigated by us with the acTub antibody (Hartenstein and Ehlers [2000] Dev. Genes Evol. 210:399-415; Younossi-Hartenstein and Hartenstein [2000] Dev. Genes Evol. 210:383-398), only a small number of pioneer neurons become acTub positive during the embryonic period. By contrast, in temnocephalids, most, if not all, neurons express acTub and form long, large-diameter axons. Initially, the brain commissure, pharyngeal nerve ring, and the connectives are laid down. Commissural tracts and tentacle nerves branching off the connectives appear later. We speculate that the precocious differentiation of the nervous system may be related to the fact that temnocephalids move by muscle action, and possess a massive and complex muscular system when they hatch. In addition, they have muscular specializations such as the anterior tentacles and the posterior sucker that are used as soon as they hatch. By contrast, juveniles of Mesostoma and larvae of polyclads move predominantly by ciliary action that may not require a complex neural circuitry for coordination. (C) 2001 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four different fibroblast growth factor receptors (FGFR) are known, three of which have splice variants (known as the b and c variants) in the FGF-binding domain, to give different patterns of sensitivity to the different FGFs. The expression of the b and c variants of the FGF receptors. together with the expression of the ligands FGF1. FGF2, FGF3, FGF7, FGF8b and FGF8c, was determined by quantitative reverse transcription-polymerase chain reaction in developing whole mouse inner ears, and in dissected components of the postnatal mouse inner ear. At embryonic age (E)10.5 days, when the otocyst is a simple closed sac, the receptor most heavily expressed was FGFR2b, relative to the postnatal day 0 level. Over the period E10.5-E12.5. during which the structures of the inner ear start to form, the expression of the different FGF receptors increased 10(2)-10(4) fold per unit of tissue, and there was a gradual switch towards expression of the 'c' splice variants of FGFR2 and FGFR3 rather than the 'b' variants. At E10.5, the ligands most heavily expressed, relative to the postnatal day 0 level, were FGF3, FGF8b and FGF8c. In the postnatal inner eat. the patterns of expression of receptors and ligands tended to be correlated, such that receptor variants were expressed in the same regions as the ligands that are known to activate them effectively. The neural/sensory region expressed high levels of FGFR3c, and high levels of the ligand FGF8b. The same area also expressed high levels of FGFR1b and FGFR2b, and high levels of FGF3. The lateral wall of the cochlea (including the stria vascularis and the spiral ligament) expressed high levels of FGFR1c and FGF1. 11 is suggested that the different FGF receptors and ligands are expressed in a spatially coordinated pattern to selectively program cochlear development. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slit is expressed in the midline of the central nervous system both in vertebrates and invertebrates. In Drosophila, it is the midline repellent acting as a ligand for the Roundabout (Robo) protein, the repulsive receptor which is expressed on the growth cones of the commissural neurons. We have isolated cDNA fragments of the zebrafish slit2 and slit3 homologues and found that both genes start to be expressed by the midgastrula stage well before the axonogenesis begins in the nervous system, both in the axial mesoderm, and slit2 in the anterior margin of the neural plate and slit3 in the polster at the anterior end of the prechordal mesoderm. Later, expression of slit2 mRNA is detected mainly in midline structures such as the floor plate cells and the hypochord, and in the anterior margins of the neural plates in the zebrafish embryo, while slit3 expression is observed in the anterior margin of the prechordal plate, the floorplate cells in the hindbrain, and the motor neurons both in the hindbrain and the spinal cord. To study the role of Slit in early embryos, we overexpressed Slit2 in the whole embryos either by injection of its mRNA into one-cell stage embryos or by heat-shock treatment of the transgenic embryos which carries the slit2 gene under control of the heat-shock promoter. Overexpression of Slit2 in such ways impaired the convergent extension movement of the mesoderm and the rostral migration of the cells in the dorsal diencephalon and resulted in cyclopia. Our results shed light on a novel aspect of Slit function as a regulatory factor of mesodermal cell movement during gastrulation. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of programmed cell death of motoneurons during embryonic development requires the presence of their target muscle and coincides with the initial stages of synaptogenesis. To evaluate the role of synapse formation on motoneuron survival during embryonic development, we counted the number of motoneurons in rapsyn-deficient mice. RaDsyn is a 43 kDa protein needed for the formation of postsynaptic specialisations at vertebrate neuromuscular synapses. Here we show that the rapsyn-deficient mice have a significant increase in the number of motoneurons in the brachial lateral motor column during the period of naturally occurring programmed cell death compared to their wild-type littermates. In addition, we observed an increase in intramuscular axonal branching in the rapsyn-deficient diaphragms compared to their wild-type littermates at embryonic day 18.5. These results suggest that deficits in the formation of the postsynaptic specialisation at the neuromuscular synapse, brought about by the absence of rapsyn, are sufficient to induce increases in both axonal branching and the survival of the innervating motoneuron. Moreover, these results support the idea that skeletal muscle activity through effective synaptic transmission and intramuscular axonal branching are major mechanisms that regulate motoneuron survival during development. (C) 2001 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marsupial pregnancy differs from that in eutherians in duration, placentation and hormonal profile so much so that maternal recognition of pregnancy may not occur in polyovular marsupials. However, a comparison of gravid and non-gravid uteri reveals differences indicative of histological and physiological adaptations to pregnancy. In the present study, the hypothesis that embryo-maternal signalling occurs in polyovular marsupials was tested by examining serum from non-pregnant and pregnant Sminthopsis macroura for the presence of early pregnancy factor (EPF), a serum protein secreted by the ovary in response to the presence of a newly fertilized egg in the oviduct. EPF is detectable in the serum of pregnant, but not in non-pregnant, females in all eutherians studied to date. In the present study, EPF was detected in S. macroura serum by the rosette inhibition test during the first 9 days of the 10.7 day gestation period in this marsupial. However, EPF was not detected on day 10, just before parturition, or in non-pregnant or preovulatory animals. Immunohistochemical analysis of ovaries from gravid and non-gravid animals demonstrates that EPF is found in the capillaries, interstitial spaces and secretory cells of the corpus luteum. It is concluded that the spatiotemporal pattern of EPF activity described strongly indicates that maternal recognition of pregnancy in marsupials is mediated, at least in part, by EPF. Because the endocrinological milieu is the same in pregnant and non-pregnant marsupials, the possibility of using marsupials as an experimental system for studying EPF function unconfounded by hormonal effects is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each abdominal hemisegment of the Drosophila embryo has two sensory neurons intimately associated with a tracheal branch. During embryogenesis, the axons of these sensory neurons, termed the v'td2 neurons, enter the CNS and grow toward the brain with a distinctive pathway change in the third thoracic neuromere. We show that the axons use guidance cues that are under control of the bithorax gene complex (BX-C). Pathway defects in mutants suggest that a drop in Ultrabithorax expression permits the pathway change in the T3 neuromere, while combined Ultrabithorax and abdominal-A expression represses it in the abdominal neuromeres. We propose that the axons do not respond to a particular segmental identity in forming the pathway change; rather they respond to pathfinding cues that come about as a result of a drop in BX-C expression along the antero-posterior axis of the CNS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryonic development of tendons is in close association with that of cartilage and bone. Although these tissues are derived from mesenchymal progenitor cells which also give rise to muscle and fat, their fates clearly diverse in early embryonic stages, Transcription factors may play pivotal roles in the process of determination and differentiation of tendon cells as well as other cells in the skeletal system. Scleraxis, a basic helix-loop-helix (bHLH) type transcription factor. is expressed in mesenchymal progenitors that later form connective tissues including tendons. Sox9 is an HMG-box containing transcription factor, which is expressed at high levels in chondrocytes. We hypothesized that the two transcription factors regulate the fate of cells that interact with each other at the interface between the two tissues during divergence of their differentiation pathways, To address this point, we investigated scleraxis and Sox9 rnRNA expression during mouse embyogenesis focusing on the coordinated development of tendons and skeletons, In the early stage of mesenchymal tissue development at 10.5 d.p.c., scleraxis and Sox9 transcripts were expressed in the mesenchymal progenitor cells in the appendicular and axial mesenchyme. At 11.5 d.p.c.. scleraxis transcripts were observed in the mesenchymal tissue surrounding skeletal primordia which express Sox9. From this stage, scleraxis expression was closely associated with, but distinct from, formation of skeletal primordia, At 13.5 d.p.c., scleraxis was expressed broadly in the interface between muscle and skeletal primordia while Sox9 expression is confined within the early skeletal primordia. Then. at 15.5 d.p.c., scleraxis transcripts were more restricted to tendons. These observations revealed the presence of temporal and spatial association of scleraxis expression during embryonic development of tendon precursor cells in close association with that of So,0 expression in chondrogenic cells in skeletal tissues. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The zebrafish has a number of distinct advantages as an experimental model in developmental biology. For example, large numbers of embryos can be generated in each lay, development proceeds rapidly through a very precise temporal staging which exhibits minimal batch-to-batch variability, embryos are transparent and imaging of wholemounts negates the need for tedious histological preparation while preserving three-dimensional spatial relationships. The zebrafish nervous system is proving a convenient model for studies of axon guidance because of its small size and highly stereotypical trajectory of axons. Moreover, a simple scaffold of axon tracts and nerves is established early and provides a template for subsequent development. The ease with which this template can be visualized as well as the ability to spatially resolve individual pioneer axons enables the role of specific cell-cell and molecular interactions to be clearly deciphered. We describe here the morphology and development of the earliest axon pathways in the embryonic zebrafish central nervous system and highlight the major questions that remain to be addressed with regard to axon guidance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The receptor Roundabout-1 (Robo1) and its ligand Slit are known to influence axon guidance and central nervous system (CNS) patterning in both vertebrate and nonvertebrate systems. Although Robo-Slit interactions mediate axon guidance in the Drosophila CNS, their role in establishing the early axon scaffold in the embryonic vertebrate brain remains unclear. We report here the identification and expression of a Xenopus Robo1 orthologue that is highly homologous to mammalian Robo1. By using overexpression studies and immunohistochemical and in situ hybridization techniques, we have investigated the role of Robo1 in the development of a subset of neurons and axon tracts in the Xenopus forebrain. Robo1 is expressed in forebrain nuclei and in neuroepithelial cells underlying the main axon tracts. Misexpression of Robo1 led to aberrant development of axon tracts as well as the ectopic differentiation of forebrain neurons. These results implicate Robo1 in both neuronal differentiation and axon guidance in embryonic vertebrate forebrain. (C) 2002 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cestodes (tapeworms) are a derived, parasitic clade of the phylum Platyhelminthes (flatworms). The cestode body wall represents an adaptation to its endoparasitic lifestyle. The epidermis forms a nonciliated syncytium, and both muscular and nervous system are reduced. Morphological differences between cestodes and free-living flatworms become apparent already during early embryogenesis. Cestodes have a complex life cycle that begins with an infectious larva, called the oncosphere. In regard to cell number, cestode oncospheres are among the simplest multicellular organisms, containing in the order of 50-100 cells. As part of our continuing effort to analyze embryonic development in flatworms, we describe here the staining pattern obtained with acTub in embryos and larvae of the cestode Hymenolepis diminuta and, briefly, the monogenean Neoheterocotyle rhinobatidis. In addition, we labeled the embryonic musculature of Hymenolepis with phalloidin. In Hymenolepis embryos, two different cell types that we interpret as neurons and epidermal gland cells express acTub. There exist only two neurons that develop close to the midline at the anterior pole of the embryo. The axons of these two neurons project posteriorly into the center of the oncosphere, where they innervate the complex of muscles that is attached to the booklets. In addition to neurons, acTub labels a small and invariant set of epidermal gland cells that develop at superficial positions, anteriorly adjacent to the neurons, in the dorsal midline, and around the posteriorly located hooklets. During late stages of embryogenesis they spread and form a complete covering of the embryo. We discuss these data in the broader context of platyhelminth embryology.