922 resultados para Embankment Model Tests


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical models are widely used in the study of geotechnical earthquake engineering phenomena, and the comparison of modelling results to observations from field reconnaissance provides a transparent means of evaluating the design of our physical models. This paper compares centrifuge tests of pile groups in laterally spreading slopes with the response of piled bridge abutments in the 2011 Christchurch earthquake. We show that the model foundation's fixity conditions strongly affect the success with which the mechanism of response of the real abutments is replicated in the tests. © 2012 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uplift capacity of helical anchors normally increases with the number of helical plates. The rate of capacity gain is variable, considering that the disturbance caused by the anchor installation is generally more pronounced in the soil mass above the upper plates than above the lower plates, because the upper soil layers are penetrated more times. The present investigation examines the effect of the number of helices on the performance of helical anchors in sand, based on the results of centrifuge model tests. Uplift loading tests were performed on 12 different types of piles installed in two containers of dry sand prepared with different densities. The measured fractions of the uplift capacity related to each individual helical plate of multi-helix anchors were compared with the fractions predicted by the individual bearing method. The results of this investigation indicate that in double- and triple-helix anchors, the contributions of the second and third plate to the total anchor uplift capacity decreased with the increase of sand relative density and plate diameter. In addition, these experiments demonstrated that the variation of the anchor load-displacement behavior with the number of helices also depends on these parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports extensive tests of empirical equations developed by different authors for harbour breakwater overtopping. First, the existing equations are compiled and evaluated as tools for estimating the overtopping rates on sloping and vertical breakwaters. These equations are then tested using the data obtained in a number of laboratory studies performed in the Centre for Harbours and Coastal Studies of the CEDEX, Spain. It was found that the recommended application ranges of the empirical equations typically deviate from those revealed in the experimental tests. In addition, a neural network model developed within the European CLASH Project is tested. The wind effects on overtopping are also assessed using a reduced scale physical model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models are abstractions of reality that have predetermined limits (often not consciously thought through) on what problem domains the models can be used to explore. These limits are determined by the range of observed data used to construct and validate the model. However, it is important to remember that operating the model beyond these limits, one of the reasons for building the model in the first place, potentially brings unwanted behaviour and thus reduces the usefulness of the model. Our experience with the Agricultural Production Systems Simulator (APSIM), a farming systems model, has led us to adapt techniques from the disciplines of modelling and software development to create a model development process. This process is simple, easy to follow, and brings a much higher level of stability to the development effort, which then delivers a much more useful model. A major part of the process relies on having a range of detailed model tests (unit, simulation, sensibility, validation) that exercise a model at various levels (sub-model, model and simulation). To underline the usefulness of testing, we examine several case studies where simulated output can be compared with simple relationships. For example, output is compared with crop water use efficiency relationships gleaned from the literature to check that the model reproduces the expected function. Similarly, another case study attempts to reproduce generalised hydrological relationships found in the literature. This paper then describes a simple model development process (using version control, automated testing and differencing tools), that will enhance the reliability and usefulness of a model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Participant performance is critical to the success of projects. At the same time, enhancing the satisfaction of participants not only helps in problem solving but also improves their motivation and cooperation. However, previous research related to participant satisfaction is primarily concerned with clients and customers and relatively little attention has been paid to contractors. This paper investigates how the performance of project participants affects contractor project satisfaction in terms of the client's clarity of objectives (OC) and promptness of payments (PP), designer carefulness (DC), construction risk management (RM), the effectiveness their contribution (EW) and mutual respect and trust (RT). With 125 valid responses from contractors in Malaysia, a contractor satisfaction model is developed based on structural equation modelling. The results demonstrate the necessity for dividing abstract satisfaction into two dimensions, comprising economic-related satisfaction (ES) and production-related satisfaction (PS), with DC, OC, PP and RM having significant effects on ES, while DC, OC, EW and RM influence PS. In addition, the model tests the indirect effects of these performance variables on ES and PS. In particular, OC indirectly affects ES and PS through mediation of RM and DC respectively. The results also provide opportunities for improving contractor satisfaction and supplementing the contractor selection criteria for clients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Length scale-down (LS) model tests have been traditionally employed for laboratory studies on aeolian vibration of transmission line conductors. The span adopted is normally 30 m and is recommended by the relevant Indian, as well as other, standards. The traditionally adopted length of the LS model is reexamined herein to establish the rationale behind the choice. Based on the theoretical studies discussed, certain guidelines for the choice of model span of conductor are emphasized. In addition, the adequacy of the LS span as a tool for predicting the performance of the full span is reestablished.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the results of shaking table tests on geotextile-reinforced wrap-faced soil-retaining walls. Construction of model retaining walls in a laminar box mounted on a shaking table, instrumentation, and results from the shaking table tests are discussed in detail. The base motion parameters, surcharge pressure and number of reinforcing layers are varied in different model tests. It is observed from these tests that the response of the wrap-faced soil-retaining walls is significantly affected by the base acceleration levels, frequency of shaking, quantity of reinforcement and magnitude of surcharge pressure on the crest. The effects of these different parameters on acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are also presented. The results obtained from this study are helpful in understanding the relative performance of reinforced soil-retaining walls under different test conditions used in the experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the shaking table studies to investigate the factors that influence the liquefaction resistance of sand. A uniaxial shaking table with a perspex model container was used for the model tests, and saturated sand beds were prepared using wet pluviation method. The models were subjected to horizontal base shaking, and the variation of pore water pressure was measured. Three series of tests varying the acceleration and frequency of base shaking and density of the soil were carried out on sand beds simulating free field condition. Liquefaction was visualized in some model tests, which was also established through pore water pressure ratios. Effective stress was calculated at the point of pore water pressure measurement, and the number of cycles required to liquefy the sand bed were estimated and matched with visual observations. It was observed that there was a gradual variation in pore water pressure with change in base acceleration at a given frequency of shaking. The variation in pore water pressure is not significant for the range of frequency used in the tests. The frequency of base shaking at which the sand starts to liquefy when the sand bed is subjected to any specific base acceleration depends on the density of sand, and it was observed that the sand does not liquefy at any other frequency less than this. A substantial improvement in liquefaction resistance of the sand was observed with the increase in soil density, inferring that soil densification is a simple technique that can be applied to increase the liquefaction resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper focuses on understanding the seismic response of geosynthetic reinforced retaining walls through shaking table tests on models of modular block and rigid faced reinforced retaining walls. Reduced-scale models of retaining walls reinforced with geogrid layers were constructed in a laminar box mounted on a uniaxial shaking table and subjected to various levels of sinusoidal base shaking. Models were instrumented with ultrasonic displacement sensors, earth pressure sensors and accelerometers. Effects of backfill density, number of reinforcement layers and reinforcement type on the performance of rigid faced and modular block walls were studied through different series of model tests. Performances of the walls were assessed in terms of face deformations, crest settlement and acceleration amplification at different elevations and compared. Modular block walls performed better than the rigid faced walls for the same level of base shaking because of the additional support derived by stacking the blocks with an offset. Type and quantity of reinforcement has significant effect on the seismic performance of both the types of walls. Displacements are more sensitive to relative density of the backfill and decrease with increasing relative density, the effect being more pronounced in case of unreinforced walls compared to the reinforced ones. Acceleration amplifications are not affected by the wall facing and inclusion of reinforcement. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the recent rapid growth of Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches, there has developed an emergent requirement for more accurate theoretical models to predict their electromechanical behaviors. Many parameters exist in the analysis of the behavior of the switch, and it is inconvenient for further study. In this paper, an improved model is introduced, considering simultaneously axial stress, residual stress, and fringing-field effect of the fixed-fixed bridge structure. To avoid any unnecessary repetitive model tests and numerical simulation for RF MEMS switches, some dimensionless numbers are derived by making governing equation dimensionless. The electromechanical behavior of the fixed-fixed bridge structure of RF MEMS switches is totally determined by these dimensionless numbers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Asian tsunami of 26 December 2004 killed over 220 000 people and devastated coastal structures, including many thousands of traditional brick-built homes. This paper presents the results of model tests that compare the impact of a tsunami wave on a typical coastal house with that on a new tsunami resistant design developed in the USA and now built in Sri Lanka Digital images recorded during the test reveal how the tsunami wave passed through the new house design without damaging it but severely damaged the typical coastal house. Pressure sensor results also provided further insight into tsunami wave loading, indicating that the established Japanese method significantly underestimates maximum impact load.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increments of internal forces induced in a tunnel lining during earthquakes can be assessed with several procedures at different levels of complexity. However, the substantial lack of well-documented case histories still represents a difficulty in order to validate any of the methods proposed in literature. To bridge this gap, centrifuge model tests were carried out on a circular aluminium tunnel located at two different depths in dense and loose dry sand. Each model has been instrumented for measuring soil motion and internal loads in the lining and tested under several dynamic input signals. The tests performed represented an experimental benchmark to calibrate dynamic analyses with different approaches to account for soil-tunnel kinematic interaction. © 2009 IOS Press.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In practice, piles are most often modelled as "Beams on Non-Linear Winkler Foundation" (also known as “p-y spring” approach) where the soil is idealised as p-y springs. These p-y springs are obtained through semi-empirical approach using element test results of the soil. For liquefied soil, a reduction factor (often termed as p-multiplier approach) is applied on a standard p-y curve for the non-liquefied condition to obtain the p-y curve liquefied soil condition. This paper presents a methodology to obtain p-y curves for liquefied soil based on element testing of liquefied soil considering physically plausible mechanisms. Validation of the proposed p-y curves is carried out through the back analysis of physical model tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performance of the contra-rotating Wells turbine installed in the LIMPET wave power station is compared to the predicted performance from theoretical analysis and model tests. A reasonable agreement was found between the predicted and measured turbine damping characteristic, however the turbine efficiency was found to be poorly predicted. It is postulated that this is due to the unsteady nature and mal-distribution of flow through the LIMPET turbine, which were not considered in the predictions. It is suggested that the reduced performance of the contra-rotating Wells turbine makes biplane or monoplane Wells turbines with guide vanes better solutions for OWC's.